The dependence of H-mode energy confinement and transport on collisionality in NSTX (Outline) – S. Kaye et al.

- I) Premise
 - a. Unlithiated and lithiated plasmas exhibit different dependences of confinement on dimensional parameters (I_p , B_T etc)
 - i. I_p , B_T scans of unlithiated and lithiated plasmas (Nu scan)
 - ii. Between-shot lithium deposition scan at fixed I_p , B_T (Li scan)
 - b. Collisionality unifies confinement trends
 - i. Nu scan with constrained q, beta range
 - ii. Li scan
 - c. Strong, favorable dependence of normalized confinement with decreasing collisionality
 - i. Even stronger dependence when rho-star variation taken into account and Bohm or gyro-Bohm dependence assumed
- II) What causes reduced collisionality?
 - a. Broadening of T_e profile; Z_{eff} , n_e variations not controlling
- III) Local transport
 - a. Electron transport reduced considerably (one order of magnitude) going from high to low collisionality
 - i. Similar result when normalized to gyroBohm
 - b. Ion transport relative to neoclassical actually increases up to a factor of 4 to 5 going from high to low collisionality
 - i. Toroidal rotation shear also decreases going from high to low collisionality (which is more fundamental?)
- IV) Linear gyrokinetic results
 - a. ETG completely stabilized in outer regions going from highest to lowest collisionality
 - b. Microtearing becomes less dominant; much stabilization
 - c. Hybrid TEM/KBM(/ITG) modes become more radially extended, more predominant going from high to low collisionality
- V) Summary
 - a. Results appear to hang together
 - b. NSTX-U important to see if improvement at lower nustar continues
 - c. Also, flexible beams to change rotation/rotation shear to determine effect of this vs collisionality
- VI) Status
 - a. First draft of paper written and circulated to co-authors
 - b. Linear g-k results being refined