

Outline for IAEA FEC Talk

Stefan Gerhardt

and the NSTX Research Team

NSTX Monday Meeting B318 8/27/2012

CompX General Atomics FIU INL Johns Hopkins U LANL LLNL

Coll of Wm & Mary Columbia U

Lodestar MIT

Lehigh U Nova Photonics

ORNL PPPL

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA UCSD

U Colorado

U Illinois

U Maryland U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

X Science LLC

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev Ioffe Inst TRINITI **Chonbuk Natl U NFRI KAIST POSTECH** Seoul Natl U **ASIPP CIEMAT FOM Inst DIFFER** ENEA, Frascati CEA, Cadarache IPP. Jülich IPP, Garching ASCR, Czech Rep

Synopsis Promised Approximately Equal Levels of Results in Three Areas

- Disruptivity analysis and safe operating windows
- Detectability, and detection, of disruptions
- Halo currents dynamics
- Proposed flow of talk:
 - What conditions minimize disruptions.
 - When they do occur, are then detectable?
 - When they do occur, what are the consequences in terms of halo currents?

Disruptivity And Safe Operating Windows

- Nuclear Fusion manuscript on subject ~95% complete.
- For IAEA talk:
 - 2D plots of disruptivity vs β_N and q^* , S, F_P , and I_i .
 - Disruptivity vs. rotation.
 - Importance of maintaining elevated q_{min}.
 - Summarize characteristics of scenarios with minimal disruptivity, and that next step in research is to maintain these characteristics against the equilibrium evolution of the plasma.

Detectability of ST Disruptions

- Have not worked on it much since USBPO disruption mitigation workshop talk.
- For IAEA talk:
 - Describe simple "1D" tests of disruptions imminence.
 - Emphasize "physics based" tests (neutron rate).
 - Show how tests can be combined.
 - With fairly good level of success.
 - Describe types of scenarios/events that lead to:
 - false positives
 - failure to detect

Dynamics of the Halo Current Asymmetry

- January 2012 Nuclear Fusion paper covered basic characteristics of halo currents in NSTX.
- New draft manuscript for Nuclear Fusion covers details of the halo current asymmetry at locations where current enters the divertor floor.
 - Focus on this for talk
- For IAEA talk:
 - Example of halo current rotation and toroidal peaking.
 - Emphasize the variability.
 - Statistics of the rotation...vs. halo current magnitude, halo current fraction, maybe n=1 current level.
 - Observation and explanation of symmeterization of the halo current pulse late in the discharge.