<u>MP 2012-04-23-021: Long-Pulse Low Rotation</u> <u>Plasma Investigation for ITER Applicability and</u> <u>Instability Characterization in KSTAR High</u> Normalized Beta Plasmas

S.A. Sabbagh¹, Y.-S. Park¹, Y.M. Jeon², S.H. Hahn², J. W. Berkery¹, J.M. Bialek¹, Y.S. Bae², J.G. Bak², J. Chung², J.H. Kim², J.Y. Kim², J. Ko², S.G. Lee², Y.K. Oh², H.K. Park³, J.K. Park⁴, J.C. Seol⁵, K.C. Shaing⁵, H.L. Yang², S.W. Yoon², K.-I. You², G. Yun³, and the KSTAR Team

¹Department of Applied Physics, Columbia University, New York, NY, USA ²National Fusion Research Institute, Daejeon, Korea ³POSTECH, Pohang, Korea ⁴Princeton Plasma Physics Laboratory, Princeton, NJ, USA ⁵National Cheng Kung University, Tainan, Taiwan

> Brief Run Summary Presented to NSTX Research Team December 3rd, 2012 PPPL

KSTAR MP2012-04-23-037: 11/13/12 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y.M. Jeon (NFRI), et al.

<u>MP2012-04-23-02: expand KSTAR high β_N operating</u> <u>space, investigate instabilities, examine low ω_{ϕ} </u>

Motivation

- Investigate plasma stability in regimes most relevant to ITER, while making connection with present tokamaks
 - Lower I_i, higher β_N , varied (lower) plasma rotation, ω_{ϕ}
 - New 2012 KSTAR capabilities will allow significant new results
- Overall Goals
 - Approach n = 1 stability limit using 2nd NBI source
 - Key goal for KSTAR to demonstrate high stability performance to world community
 - 2. Examine MHD mode stability vs. ω_{ϕ} by further demonstrating ω_{ϕ} reduction by non-resonant neoclassical toroidal viscosity (NTV)
- 1/2 done Critical for direct applicability of KSTAR plasmas to ITER
 - Key precursor to rotation and active n = 1 mode control physics studies in KSTAR
 - 3. Investigate physical elements of NTV that are presently not well established and are unique to KSTAR device capabilities
- 1/2 done
- Examination of neoclassical steady-state rotation speed
 - Dependence of NTV torque on plasma collisionality (not done due to time)

Incomplete due to lost run time, not an issue with physics

Even with an incomplete run, MP2012-04-23-021 generated important results so far

- Brief results summary
 - 1. ELM mitigation found using n = 2 fields with midplane IVCC alone
 - Challenges ELM stabilization hypotheses that require applied field that aligns with field line pitch (e.g. off-midplane coils)
 - 2. Plasmas have reached and surpassed the n = 1 ideal no-wall limit computed and published for KSTAR with H-mode profiles
 - High values of β_N up to 2.9, $\beta_N/l_i > 4$
 - Published n = 1 no-wall limit is $\beta_N = 2.5$ at $I_i = 0.7$ ($\beta_N/I_i = 3.57$)
 - Plasma rotation has been significantly altered in a controlled manner with n = 2 applied 3D field
 - Key for mode stability studies, and access to ITER-relevant rotation
 - Utilized middle IVCC only (so far); ~ 50% reduction in core rotation
 - Plan to run with top/bottom coils, and all coils not completed due to time
 - Two shots were taken with middle/bottom, and top/bottom (results were unexpected, but inconclusive)

1. ELM mitigation found when using n = 2 field via middle IVCC only

- Mitigation observed when sufficiently high n = 2 field is applied
 - \Box I_{Ivcc} > 3 kA/turn
 - Note: not possible to see in 2011 due to 1.8 kA/turn limit
 - Reduction in density observed at start of n = 2 applied field
 - Need to verify validity of density evolution

Experiment to reach and surpass n = 1 no-wall limit in KSTAR planned since (at least) 2010 (from Muju meeting 2011)

Highlights

- Initial H-mode and NBI have reached β_N ~ 1.3, but...
- …results reached at relatively high l_i
 - Ideal MHD (DCON) shows plasma to be stable to n = 1 mode
 - Ideal $\beta_N^{\text{no-wall}} \sim 2.5$ at $I_i \sim 0.7$
 - High I_i is less stable to vertical instability
- Key motivation to decrease l_i

2. Plasmas have passed the predicted "closest approach" to the n = 1 ideal no-wall stability limit: $I_i = 0.7$, $\beta_N = 2.5$

First step in MP04-23-021: Determine "optimal" I_p for β_N

<u>Weak dependence of β_N vs. I_p found in</u> <u>experiment</u>

A

- "Optimal" I_p for maximum β_N is approximately 0.55 MA
 - But higher I_p has lower I_i
- Low I_i ~ 0.7 sustained
- Steady β_N , with max ~ 2.5
 - rtEFIT shown
 - Full KSTAR EFIT shows same value
 - Constant β_N expected for scaling τ_E ~ I_p

<u>**B**</u>_T scaling accounts for β_N increase

<u>Step increases in n = 2 field used to alter $V_{\phi}(R)$ </u> <u>non-resonantly in MP04-23-021 with IVCC</u>

2A) Test plasma characteristics vs. toroidal rotation by slowing plasma with non resonant n = 2 NTV using IVCC Exact lp waveform and level to be

3. Effect of step increases in n = 2 IVCC current observed in mode frequency, XCS rotation data

No IVCC n > 0 field

With IVCC n = 2 field

KSTAR MP2012-04-23-037: 11/13/12 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y.M. Jeon (NFRI), et al.

t (s)

Schematic waveforms and timing - MP2012-04-23-021

KSTAR MP2012-04-23-037: 11/13/12 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y.M. Jeon (NFRI), et al.

<u>Effect of step increases in n = 2 IVCC current</u> observed in mode frequency, XCS rotation data

No IVCC n > 0 field

With IVCC n = 2 field – large step first

KSTAR MP2012-04-23-037: 11/13/12 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y.M. Jeon (NFRI), et al.

<u>Clear reduction in CES measured toroidal</u> plasma rotation profile with applied n = 2 field

- Significant alteration of rotation profile using middle IVCC coil alone
- Further analysis of CES data required to determine if braking is primarily nonresonant

Any mode activity observed does not lock

ELM mitigation found using n = 2 field, via middle IVCC only, correlates with field strength

Mitigation observed when sufficiently high n = 2 field is applied

- Stored energy, β_N varies
 - However, shot that has continuous ELMing with no n = 2 field has same β_N variation

Extra 2 shots given to MP2012-04-23-021 on 11/19/12 (transiently) yielded yet higher β_N

Final 4 shots given to MP2012-04-23-021 on 11/19-20/12 were very informative

- Lowest B_T run
 - □ B_T = 1.3T, I_p = 0.563 MA
 - □ Fully converged KSTAR EFIT shows $\beta_N \sim 2.9$
 - Lower than expected β_{N} could be due to reduced τ_{E} or mode activity

Analysis continues

- Initial attempts with different IVCC fields:
 - 1. (Only) shot with n = 2 using IVCC top/bottom coils did <u>not</u> run as shots with n = 2middle did - unexpected
 - Shots with n = 1 applied field (middle) coil doesn't lock until n = 1 mode appears

Supporting slides follow

NSTX data: n = 2 non-resonant rotation braking

distinct from resonant

Rotation control by NTV – A key physics to reach ITER-relevant operation regime in KSTAR

Highlights (from proposal)

- Plasma rotation and shear strongly effect MHD stability (NTMs, RWMs, etc.)
- KSTAR (like NSTX) with coinjected NBI drives plasma rotation
 - Balanced NBI $\neq \omega_{\phi} = 0$
- NTV drag by n = 2 field can change ω_{ϕ} without mode locking/disruption
- Several unanswered NTV physics questions KSTAR can address, e.g.
 - Neoclassical steady state (offset) velocity
 - DIII-D/NSTX different
 - Dependence of NTV drag with collisionality

Steady-state KSTAR non-resonant braking experiments can address key NTV physics

$$\tau = \tau_{non-resonant} + \tau_{resonant} \cong K \frac{p_i}{v_i} (\omega_{\varphi} - \omega_{NC}) \delta B^2 + \frac{C}{\omega_{\varphi}} \qquad \text{Resonant torque}$$
Non-resonant torque weakens as ω_{ϕ} is reduced – allows good control

Resonant part leads to locking – keep this term small in experiment

Simple steady-state torque balance (assumes other torques are constant, δB finite) with resonant term = 0

$$\omega_{\varphi} = M(1/T_i^{5/2}\delta B_{n=2}^2) + \omega_{NC}$$

Fit data to:

- (i) Check δB^2 scaling
- (ii) Check $T_i^{5/2}$ scaling
- (iii) Evaluate ω_{NC}

- (i) Vary IVCC current (~ constant T_i):
- (ii) Vary collisionality at constant IVCC current with SMBI
- This is in addition to the development of NTV alteration and control of rotation as a critical tool for use in KSTAR

