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Neural Networks can be Used to Calculate Fast (>10 kHz) T,
Profiles from Multi-Energy SXR Measurements

« Thomson scattering provides 60 Hz T, measurements

« T, can also be found from > 10 kHz ME-SXR data,
which depend on T, n,, and n,, assuming:
— Proper diagnostic calibrations: brightness, spatial
— Known spectral response of the filters and diodes
— Proper atomic emissivity models
— Proper impurity transport models

* Neural networks, trained with ME-SXR inputs and

Thomson outputs, can be used to find T, without these
requirements, and can be used in real time

* These neural networks have been studied with synthetic
X-ray data, and successfully tested with real data
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A Fully-Connected Three-Layer Neural Network Inputs X-ray
and Spectroscopic Data, Outputs Temperature Profiles
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A Simple Feedforward Neural Network Was Tested on
Synthetic X-ray, Spectroscopic, and Density Data

Used PyBrain modular machine learning library for Python

A three-layer, fully-connected feedforward network

— Input layer with up to 461 nodes (20 for each ME-SXR array, 400 for
the TGIS, 1 for FIReTIP)

— Hidden layer with an optimized number of sigmoid nodes (usually 40)

— Output layer had 20 nodes, for temperature profiles with the same
radial resolution as the ME-SXR arrays

Rprop- learning algorithm used for supervised training

— All input and outputs are scaled to the range of O to 1

Synthetic x-ray data generated from real T, profiles
— T, n, profiles from Thomson, n. profile from CHERS
— ny=0.2n, ny=0.1ng ng, =0.001 ne in coronal equilibrium

— Gaussian noise added to each signal: 0.5% for ME-SXR, 5% for
TGIS, 2% for FIReTIP data
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Neural Network Performance Improves as the Training
Dataset Grows

» Each discharge provides ~30-50 Thomson measurements
for training (only times with peak T, > 200 eV were used)

 Test case was tried on a NN trained with one shot, then on a
NN trained with 13 shots covering B, and /I, scans

« Error bars represent total RMS error throughout a discharge
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Reducing the Number of Hidden Nodes Smooths Out the
Temperature Profile, which can Miss Radial Structures
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Multiple SXR Arrays are Needed to Distinguish Changing
Temperatures from Densities and Impurity Concentrations

No Change

 When trained on one array,
network is unresponsive to
changes in one parameter

« A third (or more) arrays
may be beneficial when
several parameters vary e
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Network Works for Small Changes in Impurity Concentration,
but not for Large Influxes that are not Included in Training
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In Addition to ME-SXR, Upgraded TGIS Diagnostic will
Provide Constraints on Impurity Concentrations

« Radially resolved spectrometer operates in a survey mode
covering 30 to 700 A with spectral resolution SA/A ~ 3%.

« Detector time resolution is less than for ME-SXR (400 ms will
be upgraded to 10 ms for NSTX-U)
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Unexpected Impurity Influx can be Accounted for with TGIS
or Other Spectroscopy Data

« TGIS greatly improves network performance when impurity
or electron densities change

« Other spectrometers (w/o spatial resolution) might contribute
additional constraints, or could possibly be used in real-time

« With TGIS, the network might be able to determine n_, Z_4
profiles in addition to T, profile (future work)
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Adding Additional Diagnostics to the Network can Further
Enhance Performance
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First Test on Experimental Data Used Raw, Uncalibrated Data
from Previous-Generation, Three-Array, Optical SXR Array
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Trained on 32 Discharges, this Neural Network Produces Fast
T, Profiles in Agreement with Thomson Scattering
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Neural Networks have Proven Useful for Fast T,
Measurements and will be Further Investigated and Applied

* |t has been demonstrated that neural networks can be used
to calculate T, from ME-SXR measurements

— Training with larger datasets greatly improves results, and the
number hidden nodes must be optimized for the highest accuracy
without smoothing over radial features

— One ME-SXR array is insufficient; a minimum of two are required

— Adding additional data to the network, such as TGIS and FIReTIP,
further improve the accuracy of the results

 Future studies will include:

— Tests to see if n, and Z_g profiles can also be found with additional
ME-SXR arrays and diagnostics (BES, spectroscopy...)

— Physics studies using real data from an existing, large optical SXR
database
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