

NSTX snowflake transport analysis

Coll of Wm & Marv Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Eric T. Meier¹

V. A. Soukhanovskii¹, A. G. McLean¹, T. D. Rognlien¹, D. D. Ryutov¹, R. E. Bell², A. Diallo², S. Gerhardt², R. Kaita², B. P. LeBlanc², J. E. Menard², M. Podesta², F. Scotti², and the NSTX Research Team ¹Lawrence Livermore National Laboratory ²Princeton Plasma Physics Laboratory

NSTX Monday Physics Meeting December 17, 2012

This work was performed under the auspices of the U.S. Department of Energy under Contracts DE-AC52-07NA27344 and DE-AC02-09CH11466.

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Outline

- Snowflake motivation and overview
- UEDGE simulation setup
- NSTX modeling and analysis
- Conclusions

- Snowflake motivation and overview
- UEDGE simulation setup
- NSTX modeling and analysis
- Conclusions

NSTX compact divertor offers high heat flux environment

- Compact divertor of NSTX offers high heat flux environment even in relatively low power machine.
- In NSTX, λ_q depends inversely on plasma current (I_p): $\lambda_q \sim I_p^{-1.6}$
- In NSTX-U standard divertor, we expect (midplane) λ_q=2-4 mm (approx. 3x reduction from NSTX)

Snowflake divertor configuration offers improved power handling

- The "snowflake" magnetic configuration leads to:
 - Large flux expansion near strike point.
 - Longer connection lengths.
 - Improved power handling; increased $\lambda_{\rm q}.$
- Snowflake experiments on NSTX have shown promising results.

Ryutov, Phys. Plasmas, 2007

- Snowflake motivation and overview
- UEDGE simulation setup
- NSTX modeling and analysis
- Conclusions

UEDGE is used to compare snowflake divertor (SFD) and standard divertor (STD) physics

UEDGE Settings

Carbon impurity	Fixed fraction. 7% (non-coronal)
Anomalous perpendicular transport	 Constrained by outer midplane data Thomson: T_e, n_e Charge-exchange recombination spectroscopy: n_{C6+}, T_{C6+}
Target recycling	97%Some pumping to model Li conditioning
Scrape-off-layer power	 3 MW Discharge 141240 has 4 MW neutral beam power Assume 25% fast ion + radiation losses.
n _{D+} BC at core-edge interface	 Fixed D⁺ flux 60 atom amps (3.7e20 s⁻¹) for STD simulation corresp. to particle injection from 4 MW neutral beam. 90 atom amps (5.6e20 s⁻¹ for SNF simulation
Drift effects	No

To capture 1+ cm SOL, double-null grids are used for NSTX modeling

- NSTX grids are based on LRDFIT equilibria at 439 ms (STD), and 905 ms (SNF).
 - Both grids capture psi=0.9 to 1.1.
 - Outer midplane SOL thicknesses are 2.03 cm and 2.44 cm for the standard and snowflake grids, resp.

NSTX Monday Physics Meeting, E. T. Meier (Dec. 17, 2012)

SFD \rightarrow increased wetted area and greater connection lengths

- Increased wetted area allows a geometric reduction of heat flux.
- Longer connection lengths lead to reduced target temperatures [Stangeby, 2000]:

$$T_t \propto q_\parallel^{10/7}/L^{4/7}n_u^2~~$$
 (assuming conduction only)

– Lower $T_t \rightarrow$ More radiation?

2 0

0

10

20

R - R_{sep} (cm)

30

40

50

- Snowflake motivation and overview
- UEDGE simulation setup
- NSTX modeling and analysis
- Conclusions

Snowflake divertor (SFD) configuration yields partial detachment and large heat flux reduction

- SFD is established at ~600 ms*.
 - Core plasma retains desirable properties.
 - Outer divertor partially detaches, and ELMs are present.
 - Peak heat flux is reduced from ~8 MW/m² to ~1 MW/m².
- Simulations are conducted for 439 ms (STD) and 905 ms (SFD).

* Soukhanovskii et al., Phys. Plasmas, 2012

STD simulation matches midplane MPTS and ChERS data...

- Hyperbolic tangent functions are generated following Porter [G.D. Porter et al., PoP, 1998].
- The experimental data is shifted outboard 1.5 cm with respect to the LRDFIT equilibrium.

- Diffusivities in the core region vary as radius cubed and are uniform in the SOL and PF regions.
- Diffusivites are uniform in the SOL and PF regions.

...and the lower/outer divertor heat flux and D_{α} data

- D_α measurements are from filtered cameras.
- Heat flux is based on dual-band IR thermography.

NSTX Monday Physics Meeting, E. T. Meier (Dec. 17, 2012)

SFD simulation also matches midplane data...

Outer midplane diffusivity profiles

- Diffusivities in the core region vary as radius cubed and are uniform in the SOL and PF regions
- Hyperbolic tangent functions are generated following Porter [G.D. Porter et al., PoP, 1998].
- The experimental data is shifted outboard 1.75 cm with respect to the LRDFIT equilibrium.

...but deviates from lower/outer divertor data, especially D_{α} light

- Simulated heat flux is reduced as in the experiment, but detailed profile is not captured.
- D_α discrepancy is significant.
 - Cause of discrepancy is unclear.
- Partially detached divertor solution is found.
 - Te and Ti are ~1.5
 eV from 0 to 7 cm
 from the SP.

Ion and electron temperatures

Radiation is stronger in SFD, but primary heat flux reduction is due to geometric profile broadening

()) NSTX-U

Zone of high poloidal beta (β_p >1) is larger in SFD, possibly offering improved ELM dissipation

- During ELM ejection, high β_p might lead to convective mixing and associated reduction of peak ELM heat fluxes [D.D. Ryutov et al., CPP, 2012].
- UEDGE simulations show relatively large high-beta regions (β_p>1) in the SFD configuration.

NSTX Monday Physics Meeting, E. T. Meier (Dec. 17, 2012)

The simulation is "reluctant" to enter low-temperature (high- D_{α}) regime

- Emissivity calculations suggest that T_e below ~0.5 eV could yield the observed D_α.
- Large increasing core particle flux does not induce such low \mathbf{F}_{e} .
 - Core density is more than doubled.
 - Ion "birth energy" seems to play a minimal role.
 - Could perpendicular or parallel transport be unphysically high?
 - Is "inter-ELM" simulation missing something important?

Divertor T_e for various core particle fluxes

- Snowflake motivation and overview
- UEDGE simulation setup
- NSTX modeling and analysis
- Conclusions

Conclusions

- Anomalous perpendicular transport is found to be similar in the STD and SFD phases of the discharge.
- Total power to the outer divertor target is similar in STD and SFD.

 \rightarrow Peak heat flux reduction is enabled by geometric profile broadening.

• Simulation of snowflake phase does not recreate the strong (highly radiative) detachment seen in the experiment.

