

Mirror Langmuir Probe observations of edge plasma turbulence and the Quasi-Coherent Mode in Alcator C-Mod

B. LaBombard

Plasma Science and Fusion Center, MIT

PPPL - May 24, 2013

Mirror Langmuir Probe -- a powerful new tool for investigating boundary n, T_e , Φ profiles and turbulence

Alcator C-Mod

Background:

A "Mirror Langmuir Probe" bias system has been implemented on Alcator C-Mod's horizontal scanning-probe (4 electrodes).

Initial experiments with this diagnostic have yielded exciting new observations of boundary plasma turbulence and C-Mod's Quasi-Coherent Mode (QCM). Mirror Langmuir Probe -- a powerful new tool for investigating boundary n, T_e , Φ profiles and turbulence

Alcator C-Mod

Background:

A "Mirror Langmuir Probe" bias system has been implemented on Alcator C-Mod's horizontal scanning-probe (4 electrodes).

Initial experiments with this diagnostic have yielded exciting new observations of boundary plasma turbulence and C-Mod's Quasi-Coherent Mode (QCM).

Outline:

- What is a Mirror Langmuir Probe?
- High fidelity measurements of \tilde{n} , \tilde{T}_{e} , and $\tilde{\Phi}$ (~1 MHz)
- Very high resolution 'time averaged' n, T_e , and Φ profiles
- Detailed measurements of \tilde{n} , \tilde{T}_{e} , $\tilde{\Phi}$, \tilde{B}_{θ} and (f, k_{θ}) spectra of ~100 kHz QCM clearly identifying mode type

Mirror Langmuir Probe -- a powerful new tool for investigating boundary n, T_e , Φ profiles and turbulence

Alcator C-Mod

Background:

A "Mirror Langmuir Probe" bias system has been implemented on Alcator C-Mod's horizontal scanning-probe (4 electrodes).

Initial experiments with this diagnostic have yielded exciting new observations of boundary plasma turbulence and C-Mod's Quasi-Coherent Mode (QCM).

Outline:

- What is a Mirror Langmuir Probe?
- High fidelity measurements of \tilde{n} , \tilde{T}_{e} , and $\tilde{\Phi}$ (~1 MHz)
- Very high resolution 'time averaged' n, T_e , and Φ profiles
- Detailed measurements of \tilde{n} , \tilde{T}_{e} , $\tilde{\Phi}$, \tilde{B}_{θ} and (f, k_{θ}) spectra of ~100 kHz QCM clearly identifying mode type

QCM is a electron drift-Alfven wave.

Mirror Langmuir Probe¹ An electronic device that adjusts its I-V response in real time to match that of an actual Langmuir probe

[1] LaBombard, B. and Lyons, L., *Rev. Sci. Instrum.* 78 (2007) 073501, Lyons, L., Masters Thesis, EECS, MIT (2007).

Alcator An electronic device that adjusts its I-V response in real time to match that of an actual Langmuir probe

[1] LaBombard, B. and Lyons, L., *Rev. Sci. Instrum.* 78 (2007) 073501, Lyons, L., Masters Thesis, EECS, MIT (2007).

4/cator An electronic device that adjusts its I-V response in real time to match that of an actual Langmuir probe

[1] LaBombard, B. and Lyons, L., *Rev. Sci. Instrum.* 78 (2007) 073501, Lyons, L., Masters Thesis, EECS, MIT (2007).

4/cator An electronic device that adjusts its I-V response in real time to match that of an actual Langmuir probe

is applied to a single electrode

[1] LaBombard, B. and Lyons, L., *Rev. Sci. Instrum.* 78 (2007) 073501, Lyons, L., Masters Thesis, EECS, MIT (2007).

2-11/100

An electronic device that adjusts its I-V response in real time to match that of an actual Langmuir probe

Important: These data are obtained from a single LP electrode.

[1] LaBombard, B. and Lyons, L., *Rev. Sci. Instrum.* 78 (2007) 073501, Lyons, L., Masters Thesis, EECS, MIT (2007).

B. LaBombard TTF2013

Data from a probe scan to the separatrix in an ohmic L-mode plasma

Fluctuations in signals are not noise! These are plasma fluctuations.

Same data on expanded time scale

Immediate observation: *I_{sat}* and *T_e* fluctuations tend to track one another Working Example: MLP waveforms from a C-Mod fast-scanning probe

Same data on expanded time scale

1 μs time resolution adequate to resolve plasma dynamics

B. LaBombard TTF2013

cator

Working Example: MLP waveforms from a C-Mod fast-scanning probe

Experiment: Investigate structure of Quasi-Coherent Mode using Mirror Langmuir and Magnetic (\tilde{B}_{θ}) probes

Why study the QCM?

- Coherent edge modes, such as the QCM (in H-mode) and the "weakly coherent mode" WCM (in I-mode) play key roles in pedestal dynamics, including regulating particle and impurity confinement without ELMS.
- A first-principles understanding of these modes is an important step towards unfolding the transport physics of the boundary layer.

Alcator

Experiment: Investigate structure of Quasi-Coherent Mode using Mirror Langmuir and Magnetic (\tilde{B}_{θ}) probes

Goal: Unambiguously identify QC mode type (drift wave, interchange, ...)

Measurements: • k_{θ} -resolved \tilde{n} , \tilde{T}_{e} , $\tilde{\Phi}$, \tilde{B}_{θ} and relative phase angles

- Phase propagation relative to V_{ExB}, V_{de}
- Radial width of mode layer

Results from \tilde{B}_{θ} probe: QCM has strong B_{θ} , $J_{//}$ components

• $k_{\theta} \sim 1.5 \text{ rad/cm}$; perturbation ~field-aligned [1] $\underline{k} \cdot \underline{B} \approx 0$

Alcator

- $k_{\theta} \sim 1.5 \text{ rad/cm}; \text{ perturbation } \sim \text{field-aligned [1]} \quad \underline{k} \cdot \underline{B} \approx 0$
- QCM propagates in electron diamagnetic direction (lab frame)
- At location of QC mode layer: $B_r \sim 0.5$ mT, $\frac{J_{||}}{J_{||}} \sim 5$ A/cm²

Experimental setup: Mirror Langmuir Probe investigation of Quasi-Coherent Mode

Langmuir probe

Alcator

C-Mod

Goals: • Plunge probe across QCM mode layer Record $k_{\theta}, \tilde{n}, \tilde{T}_{e}, \tilde{\Phi}$ response Determine mode layer width (?)

Experimental setup: Mirror Langmuir Probe investigation of Quasi-Coherent Mode

- **Goals:** Plunge probe across QCM mode layer Record $k_{\theta}, \tilde{n}, \tilde{T}_{e}, \tilde{\Phi}$ response Determine mode layer width (?)
 - Does probe 'kill the mode'? Use electrodes spaced in minor radius direction to assess probe perturbation effects

Alcator

MLP passes through mode layer -- reveals density fluctuation with frequency and wavenumber of QCM

- Frequency, poloidal wave number and propagation in electron diamagnetic direction -- consistent with B_θ probe, PCI (and GPI)
- Probe appears to pass through mode

cator

·Mod

MLP passes through mode layer -- reveals density fluctuation with frequency and wavenumber of QCM

- Frequency, poloidal wave number and propagation in electron diamagnetic direction -- consistent with B_{θ} probe, PCI (and GPI)
- Probe appears to pass through mode
- Probe perturbs plasma at peak insertion (see *P_{rad}* jump)
 Post mortum: leading edge of probe head showed melt damage
- Must examine other electrodes to see if probe is perturbing mode...

cator

Mod

Radial extent of QCM fluctuation is mapped out separately by each electrode as they pass though layer

Note: \tilde{I}_{sat} power normalized to same peak value for in-going scan

- Time delay is seen among probes, consistent with their radial positions
- At peak insertion, *Prad* jumps up -- probe-induced impurity injection
 => electrodes likely affected;

Isat power envelopes are different on out-going scan

Radial profiles of ion saturation current and QCM fluctuation envelope align from all four electrodes

- Isat and Isat power profiles align, despite being recorded at different times by different probes
- Conclusion: QCM is *not* being attenuated by probe

• Radial width of Quasi-Coherent Mode layer is ~ 3 mm FWHM

cator

- QCM exists in region of positive *E_r* (*i.e.* with ExB in ion dia. dir.)

- QCM exists in region of positive *E_r* (*i.e.* with ExB in ion dia. dir.)
- From power balance: $T_e \sim 50 \text{ eV}$ at LCFS (used here to set ρ = 0 location)
- Possible break-in-slope at LCFS in *n*, *T*_e profiles (needs further study)

- QCM exists in region of positive *E_r* (*i.e.* with ExB in ion dia. dir.)
- From power balance: $T_e \sim 50 \text{ eV}$ at LCFS (used here to set ρ = 0 location)
- Possible break-in-slope at LCFS in *n*, *Te* profiles (needs further study)
- Profiles deeper into plasma are unreliable

- QCM exists in region of positive *E_r* (*i.e.* with ExB in ion dia. dir.)
- From power balance: Te ~ 50 eV at LCFS (used here to set ρ = 0 location)
- Possible break-in-slope at LCFS in *n*, *Te* profiles (needs further study)
- Profiles deeper into plasma are unreliable

QCM spans LCFS

=> consistent with QCM kicking impurities out confined plasma onto open field lines

Quasi-coherent mode propagates at electron diamagnetic drift velocity in the plasma frame

Velocities computed from East electrode profiles

$$V_{dpe} = \frac{\nabla_r nT_e \times \underline{b}}{nB} \quad V_{de} = \frac{T_e \nabla_r n \times \underline{b}}{nB} \quad V_{ExB} = \frac{\underline{b} \times \nabla_r \Phi}{B}$$

- *V_{dpe,} V_{de}* are in opposite directions to *V_{ExB}* in mode layer
- *V_{dpe}, V_{de}* are stronger than *V_{ExB}* in mode layer
- QCM propagates in e⁻ dia. direction in the plasma frame

QCM frequency is quantitatively consist with a $k_{\theta} \sim 1.5$ rad/cm mode propagating with velocity between V_{dpe} and V_{de} in the plasma frame.

cator

Snapshot of QCM reveals large amplitude, ~in-phase, density, electron temperature and potential fluctuations

Snapshot of QCM reveals large amplitude, ~in-phase, density, electron temperature and potential fluctuations

volts

Plasma Potential

Snapshot of QCM reveals large amplitude, ~in-phase, density, electron temperature and potential fluctuations

Simple Boltzmann electron response? Compute \tilde{n}_B required to satisfy $\tilde{n}_B = \langle n \rangle \exp \left(\tilde{\Phi} - \langle \Phi \rangle \right) / \tilde{T}_e$

 \tilde{n}_{B} is ~1.5x larger than measured \tilde{n} <u>Not</u> a simple Boltzmann response

Non-Boltzmann response is consistent with measured EM character of the mode -- an electron drift-Alfven wave

Non-Boltzmann response is consistent with measured EM character of the mode -- an electron drift-Alfven wave

 $\frac{qR\mu_0}{k^2} \frac{\omega}{\langle T \rangle} \tilde{J}_{//} \approx \frac{\tilde{n}\tilde{T}_e}{\langle nT \rangle} - \frac{\tilde{\Phi}}{\langle T \rangle}$

Non-Boltzmann response is consistent with measured EM character of the mode -- an electron drift-Alfven wave

Non-Boltzmann response is consistent with measured EM character of the mode -- an electron drift-Alfven wave

 Plugging in values for QCM parameters yields: J
 -> Consistent with amplitude of J
 inferred from magnetic probe.

QCM is a electron drift-Alfven wave.

¹B. Scott, PPCF, 39 (1997) 1635.

- Mirror Langmuir Probe is a powerful new tool for investigating boundary n, T_e , Φ profiles and turbulence
- MLP is revealing new insights on Alcator C-Mod's Quasi-Coherent Mode in ohmic EDA H-mode plasmas:

• Mirror Langmuir Probe is a powerful new tool for investigating boundary n, T_e , Φ profiles and turbulence

MLP is revealing new insights on Alcator C-Mod's Quasi-Coherent Mode in ohmic EDA H-mode plasmas:

• QCM spans LCFS region with a mode width of ~ 3mm

- Drives transport directly across LCFS

• Mirror Langmuir Probe is a powerful new tool for investigating boundary n, T_e , Φ profiles and turbulence

MLP is revealing new insights on Alcator C-Mod's Quasi-Coherent Mode in ohmic EDA H-mode plasmas:

• QCM spans LCFS region with a mode width of ~ 3mm

- Drives transport directly across LCFS

- QCM is an electron drift-Alfven mode as determined by:
- Mode frequency at $\sim k_{\theta} V dpe$ in plasma frame \mathbb{B}^{10}

• Mirror Langmuir Probe is a powerful new tool for investigating boundary n, T_e , Φ profiles and turbulence

MLP is revealing new insights on Alcator C-Mod's Quasi-Coherent Mode in ohmic EDA H-mode plasmas:

• QCM spans LCFS region with a mode width of ~ 3mm

- Drives transport directly across LCFS

- QCM is an electron drift-Alfven mode as determined by:
- Mode frequency at $\sim k_{\theta} V dpe$ in plasma frame $\underline{\sharp}^{10}$

- EM signature

• Mirror Langmuir Probe is a powerful new tool for investigating boundary n, T_e , Φ profiles and turbulence

MLP is revealing new insights on Alcator C-Mod's Quasi-Coherent Mode in ohmic EDA H-mode plasmas:

• QCM spans LCFS region with a mode width of ~ 3mm

- Drives transport directly across LCFS

- QCM is an electron drift-Alfven mode as determined by:
- Mode frequency at $\sim k_{\theta} V dpe$ in plasma frame \mathbb{E}^{10}

- EM signature

ρ (mm)

Isat Fluctuation Power

- Measured amplitude of plasma potential, electron ^{0.0} pressure and parallel current fluctuations

$$\frac{qR\mu_0}{k_{\!\perp}^2}\frac{\omega}{\left\langle T_e\right\rangle}\,\tilde{J}_{\prime\prime}\approx\frac{\tilde{n}\tilde{T}_e}{\left\langle nT_e\right\rangle}\!-\!\frac{\tilde{\Phi}}{\left\langle T_e\right\rangle}$$

B. LaBombard TTF2013