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Background 

•  Neoclassical Toroidal Viscosity (NTV) plays an important role for control 
of plasma rotation, stability and performance in perturbed tokamaks 

–  Non-axisymmetric magnetic perturbations (NAMPs) can fundamentally change the 
neoclassical transport by distorting particle orbits on deformed or broken flux surfaces 

–  NAMPs drive significant magnetic braking by NTV, thus change plasma rotation 
impacting on tokamak performance 

–  NAMPs are important control elements to actively stabilize locked modes, edge 
localized modes, and resistive wall modes 

•  Analytic NTV theories have been successful to show fundamental physics, but 
lack of quantitative validations 

–  1/ν regime in the high collisionality [K.C. Shaing, POP (2003)], ν_ν1/2 regime in the low 
collisionality [K.C. Shaing, POP (2008)], superbanana plateau regime in the low ExB 
precession [K.C. Shaing, PPCF (2009)] 

–  Neoclassical offset rotation in the counter-Ip direction [A.J. Cole, PRL (2007)]    
–  Approximations by large-aspect-ratio, zero-orbit-width, simplified collision operator, only 

trapped particles, and/or regime separation 
–  Missing physics for rotational resonances 
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Motivation to δf particle code for NTV calculation 

•  A δf particle code has been developed to calculate neoclassical transport in 
perturbed tokamaks 

–  Verify basic NTV physics such as quadratic δB dependency, BH resonance, etc	


–  Analyze and predict NTV in magnetic braking experiments, using δB spectrum from 3D 

perturbed equilibrium solver (IPEC) 

•  Bounce-harmonic (BH) resonance enhancing NTV [K. Kim, PRL (2013)]    

–  Predicted by [Linsker and Boozer, PFL (1982)], [H.E. Mynick, NF (1986)], and reformulated by [J.-K. 
Park, PRL (2009)]!

–  Only mechanism to enhance the NTV in the fast rotating plasma 
–  Orbit closing by resonant ExB is a critical physics to explain the BH enhanced NTV, 

which can be captured only by particle simulation w/o approximations 
–  First numerical verification of enhancement mechanism of NTV by BH resonances   
–  Recent KSTAR experiments of strong magnetic braking by BH resonances 

•  New capability for field line tracing considering plasma response 
–  Enable field line tracing considering ideal plasma response compared to vacuum field 

3 
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Outline 
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•  δf guiding-center particle code – POCA 

•  Applications to validating theories 

•  Applications to magnetic braking experiments 

•  Applications to field line tracing 

•  Summary 
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Outline 
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•  δf guiding-center particle code – POCA 

•  Applications to validating theories 

•  Applications to magnetic braking experiments 

•  Applications to field line tracing 

•  Summary 
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POCA is a drift-kinetic δf particle code for neoclassical 
transport calculation in NAMPs 

6 

•  POCA (Particle Orbit Code for Anisotropic pressures) 
–  Follows guiding-center orbit motions on the flux coordinates 
–  Solves Fokker-Plank equation with modified pitch-angle scattering collision operator 

conserving toroidal momentum 
–  Calculates local neoclassical quantities: Diffusion, flux, bootstrap current 
–  Calculates anisotropic tensor pressure and NTV torque 
–  Uses DCON/IPEC type routines and parallelized with MPI 
–  Reads 2D equilibrium from 20 equilibrium types and 3D magnetic perturbations from 

IPEC and analytic model 
Benchmarking with ORBIT in 2D! 3D effects on banana orbit (δB/B ~ 10-2)!

[K. Kim, POP (2012)] !
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POCA solves Fokker-Planck equation with guiding-center 
orbit equations 

•  Guiding-center motion is described by Hamiltonian equations of motion 

•  δf is calculated from Fokker-Planck equation 
–  Fokker-Planck equation is written as  

–  Fokker-Planck equation is reduced to	



–  Using local Maxwellian, δf can be obtained from  
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Neoclassical Toroidal Viscosity (NTV) is calculated using 
perturbed pressures and magnetic field spectrum 

8 

•  NTV calculation was benchmarked with analytic NTV theory 

–  POCA calculates NTV torque using magnetic field spectrum decomposed to Fourier 
series and perturbed pressures 

–  NTV torque is calculated in Boozer coordinates by 

–  Calculated NTV torque shows good agreements with theory, revealing strong resonant 
features to applied magnetic perturbation 
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Shift of Peak NTV by applied mode (n=3)!
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Outline 
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•  δf guiding-center particle code – POCA 

•  Applications to validating theories 

•  Applications to magnetic braking experiments 

•  Applications to field line tracing 

•  Summary 
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Combined NTV theory is a good guide for benchmarking 

•  Combined NTV formula reflects fundamental NTV physics 
–  Bounce-averaged drift-kinetic equation based on BH resonance is analytically solved 

using Krook collision to connect regimes 

–  The combined NTV formula gives the toroidal torque density as 

–  Include δB2 dependency, various resonances between bounce motion, magnetic 
precession, electric precession, and neoclassical offset rotation 

[J.-K. Park, PRL (2009)] !
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Quadratic δB dependency is the fundamental NTV physics  

11 

•  Particle simulation confirms the quadratic δB dependency of NTV 

–  NTVs at both resonant and non-resonant flux surfaces increase as δB increases 
following τφ ~ (δB)2 

–  Useful to particle simulation, enable NTV scaling by δB to improve statistics   
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New type of closed orbit is formed by rotational resonance 

12 

•  Parallel/perpendicular ExB drifts can form a closed loop at resonance 
–  Resonant field is shifted to follow path of the closed orbit satisfying  

–  Resonance condition is represented by particle’s bouncing class l  

–  Banana orbits can be closed, if ExB is fast enough to reach BH resonant frequency 
–  Various closed orbits can exist depending on energy and pitch of particle, magnetic 

field configuration, and ExB precession 

Modified closed orbit (n=3, l=1)!

Original bounce orbit w/o rotation!

Modified closed orbit (n=1, l=1)!

€ 

Resonant condition :   lω b ≈ nωE

€ 

Resonant field condition :   m − nq ± l = 0

[K. Kim, PRL (2013)] !
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Rotation scan clarifies transport mechanism by rotational 
resonances 

•  BH resonances enhance radial particle transport by closed orbits 
preventing random phase-mixing 

–  Radial drift is large when ωE ~ 0 as orbits are nearly closed without ExB precession, 
equivalent to superbanana plateau resonance 

–  When ωE is off-resonant (3ωE ≠ ωb), particle drift decreases due to phase-mixing 
–  When ExB approaches the first BH resonant frequency (3ωE ~ ωb), modified closed 

orbit prevents phase-mixing, thus enhances radial transport and NTV 
Rotation!

13 

[K. Kim, PRL (2013)] !
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Peak NTV is found at the resonant ExB precession frequency, 
verifying BH resonances in NTV 

•  BH resonance enhanced NTV is confirmed by Er scan 
–  Theory indicates bounce-harmonic resonances occur when 

–  Resonance flux surface is shifted to  
–  Bounce-harmonic resonance by l = 1 class particles with (m=7, n=3) is predicted at 

–  POCA reproduces strong peak NTV around predicted ExB precession frequency 

14 

q= 6/3 (l =1 bounce-harmonic)! q= 8/3 (l =1 bounce-harmonic)!

€ 

lω b − nωE − nω∇B = 0

€ 

lω b ≈ nωE

€ 

ωE ≈ Er /RBp   →    Er ≈ ±7 kV/m
€ 

m − nq ± l = 0

€ 

q = m ± l( ) /n

POCA!
Theory!

l=1 BH resonances!

[K. Kim, PRL (2013)] !



NSTX-U Physics Meeting – POCA Application (Kimin Kim) ! June 3, 2013!

Closed orbits by BH resonances can be found in NSTX   

•  Bounce-harmonic resonance almost always exist in perturbed tokamaks 
–  BH resonance always exist in the finite ExB due to Maxwellian energy distribution, and 

on every surface due to multi-harmonic magnetic perturbations   
–  Modified closed orbits, theoretically predicted and numerically reproduced in the simple 

configuration, can be also found in the complicated NSTX configuration 
–  Identical features in orbit-closing by resonance 

Closed orbit (n=1, l=1)! Closed orbit (n=2, l=1)! Closed orbit (n=3, l=1)!

Original bounce orbits w/o rotation!

15 
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•  Poloidal modes can be coupled but toroidal mode cannot 
–  Three-mode magnetic perturbation applied and compared with linear NTV sum of three 

single-mode perturbations of the same harmonics 
–  Indicate no or weak toroidal mode coupling effect regardless gap  
–  Poloidal modes can couple when the gap is small!

Mode coupling effect of NTV was tested using analytic δB 

16 

Sum!
Multi-mode!
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Outline 
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•  δf guiding-center particle code – POCA 

•  Applications to validating theories 

•  Applications to magnetic braking experiments 

•  Applications to field line tracing 

•  Summary 
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POCA is being actively applied to experimental analysis 

18 

•  Perturbed magnetic field spectrum provided by IPEC 

–  Original IPEC output contains nonphysical peaks at the rational surfaces 
–  Fitting technique (i.e. Chebyshev polynomials) will be used in POCA as 

–  Fitting follows overall features of IPEC δB, and effectively smoothes the peaks € 
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NSTX #124439 (θ=0.0, φ=0.0)!
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Consistent NTV profile and total NTV was obtained in DIII-D 
n=3 magnetic braking 

19 

•  Application of POCA to DIII-D n=3 magnetic braking (in QH mode 
experiments) using IPEC δB gives a consistent NTV  

–  Consistent with combine NTV formula in profile, and good agreement with 
measurement in total NTV torque 

DIII-D #145117 (Burrell, Garofalo) ~ 3Nm!

IPEC-NTV ~ 2.8Nm!

IPEC-LAR ~ 2.6Nm!

[K. Kim et al., Submitted to Nucl. Fusion (2012)] !

POCA ~ 2.9Nm!
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Prediction of NTV in NSTX can be improved with POCA  

20 

•  Improved agreement with measurement in NSTX n=3 discharge 
–  POCA calculates damping rate from NTV / Experiment gives NTV from damping rate 
–  Both damping and NTV torque profiles show improved agreements with measurements  
–  Combined theory is valid only within an order of magnitude, due to the large aspect-ratio 

expansion and ignoring finite-orbit-width 
–  Total NTV torque agrees well: Exp. ~3.5Nm, POCA ~2.7Nm 
–  Room for further improvement in experimental estimation and numerical simulation 

[K. Kim et al., Submitted to Nucl. Fusion (2012)] !
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•  Rotation scan predicts neoclassical offset rotation 
–  Neoclassical offset can be found approximately, when NTV crosses zero in rotation 

scan (Er/Er,exp~5) 
–  Theoretically, neoclassical offset rotation is predicted by 

–  Numerically obtained Kc is consistent with theory prediction, indicating the plasma is in 
the connected regime 

Neoclassical offset can be identified at zero-torque 

€ 

Vφ ,offset = Kc
1

ZieBθ
dTi
dr

21 

€ 

Kc =
Vφ ,offset

1
ZieBθ

dTi
dr

  ≈   3.5 (1/ν regime)   or   0.9  (ν regime)
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Toroidal mode coupling was tested for TBM mock-up 
experiment in DIII-D 

22 

•  No (or weak) toroidal coupling was found in TBM case 
–  POCA can take multi-toroidal harmonics simultaneously 
–  Obtained NTV by multi-modes comparable to linear NTV sum by single modes (~ 0.2 

Nm with 10xδB in L-mode), indicating no (weak) toroidal mode coupling 
–  Consistent trend with theory for NTV vs. toroidal mode number, but smaller NTV          

 Weak (no) braking in experiment?  
–  High β plasma with visible braking effects will be the next target 

DIII-D #140250 (L-mode)!Linear sum for n=1~20!
Multi-toroidal harmonics!
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Various Braking Profiles in NSTX and NSTX-U 

23 

NTV by Midplane coils ! Midplane n=3  NCC n=1  NCC n=3  NCC n=4  NCC n=6!

•  POCA predicts variability of braking profiles by Midplane and NCC  
–  Midplane coils can drive broad (n=2) or peaked (n=3) NTV profiles 
–  (Full and/or partial) NCC can provide various braking profiles by n=1 ~ 6, depending on 

phases 



NSTX-U Physics Meeting – POCA Application (Kimin Kim) ! June 3, 2013!

Various Braking Profiles in NSTX and NSTX-U 

Midplane n=3  NCC n=1  NCC n=3  NCC n=4  NCC n=6!

•  POCA predicts variability of braking profiles by Midplane and NCC  
–  Midplane coils can drive broad (n=2) or peaked (n=3) NTV profiles 
–  (Full and/or partial) NCC can provide various braking profiles by n=1 ~ 6, depending on 

phases: Consistent to δB profiles 
–  Polynomial degree for fitting δB should be carefully selected in high-n (=4,6) cases for 

better radial resolution in NTV calculations 

Averaged δB profile!

24 
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Outline 

•  δf guiding-center particle code – POCA 

•  Applications to validating theories 

•  Applications to magnetic braking experiments 

•  Applications to field line tracing 

•  Summary 
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New Capability for Field Line Tracing 

•  Field line tracing (FLT) routine is now implemented in POCA 
–  Use cylindrical coordinates (R, Z, φ) including divertor/limiter/wall structures 
–  Solves a set of magnetic differential equations  

–  Provide Poincare plot and divertor footprint modified by 3D field 
–  Calculate field line connection length and field line loss fraction 
–  Benchmarked with NSTX and DIII-D cases (i.e. lobe, divertor footprint, heat flux) 
–  Applicable to NSTX-U NCC coil design study 

•  POCA-FLT has a unique capability via coupling with IPEC 
–  Vacuum δB or IPEC δB with ideal plasma response can be taken, which reveals the 

shielding of resonant field and δB amplification by ideal response!
–  Every possible field component can be included for NSTX(-U) with or without plasma 

response (EFC, PF5EF, TFEF)!
–  Multi-toroidal mode can be calculated simultaneously !
–  Parallelized for computational efficiency!
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Example 1: NSTX n=3 mode 

•  Clear lobe structures are found from Poincare plot 
–  Similar color indicates the similar initial flux surfaces (core: BLUE  edge: RED) 
–  Show field line splitting on the divertor plate!
–  Indicates ideal plasma responses shield resonant components, preventing opening of 

islands and field line loss from inner region (< ψn=0.97)!
–  Connection length indicates the fundamental feature of stochastic fields!

27 

Connection length profile !
by vacuum and IPEC (ψlim=0.97) !
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Example 2: DIII-D n=3 mode 

28 

•  Similar features by vacuum and plasma response are found  
–  Stochastic region changes depending on the boundary for ideal plasma response        

(ψlim=0.96, 0.99)  
–  Typical lobe structures in DIII-D n=3 are clearly obtained 
–  Microscopic structure inside lobe is also captured 
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Example 3: n=3 Error Field Correction in NSTX 
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•  Divertor footprint in NSTX EFC discharge shows a clear correction of n=3 
error fields from PF5 coil 

–  POCA-FLT takes multi-toroidal harmonics using IPEC inputs 
 (i.e. n=3 by midplane, PF5 error field, n=1 by midplane, PF5/TF error fields) 

–  Intrinsic n=3 error field by PF5 makes clear n=3 pattern 
–  When error fields are corrected by midplane coils, split field lines almost disappear, 

indicating perfect error field correction 

Intrinsic error field by PF5 (n=3) ! n=3 error field correction!
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Vacuum! IPEC!

Example 4: POCA-FLT indicates the amplification of n=1 is 
responsible for the divertor footprint 

30 

•  Additional splitting is generated by amplification of n=1 perturbations 
–  Vacuum field cannot explain observed divertor footprint, but n=1 amplifications can do  
–  Field amplification by ideal plasma response is well-known, and revealed by FLT 
–  Accurate equilibrium required due to sensitivity of n=1 plasma response  

30°!

150°!

270°!
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Example 5: Field Line Tracing for NCC 
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resonant n=1 by NCC! less-resonant n=1 by NCC! less-resonant n=3 by NCC!n=3 by Midplane!

n=4 by NCC! n=6 by NCC!
•  POCA-FLT supports capability of NCC to 

produce various 3D field characteristics 
–  POCA-FLT predicts modifications of 

vacuum stochastic layers for n=1~6  
–  NCC can provide resonant or less-

resonant fields depending on the phase 
but similar NTV braking profile  

–  Higher toroidal mode supplies stronger 
field splitting on the target 
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Summary 

32 

•  POCA is being extensively applied to study NTV physics 
–  Verify and validate theories, analyze and predict experiments, investigate new physics 

•  POCA studies 3D field structures via FLT 
–  Well-established method, but unique capability to take 3D field of multi-toroidal 

harmonics, with or without plasma response 

•  There are many ongoing and future research topics 
–  NTV prediction, analysis and field line tracing for NSTX-U NCC 
–  TBM mock-up experiment analysis with high β plasmas in DIII-D 
–  Ion/electron orbit tracing to study particle loss by 3D field 
–  Calculate δWk (equivalence of NTV-δWk) 
–  3D field effects on (ion) bootstrap current 
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Back up 
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General Perturbed Equilibrium Code (GPEC) is on progress 

•  Perturbed equilibrium codes are efficient to study 3D field physics in 
tokamaks with non-axisymmetric perturbations 

–  IPEC solves ideal force balance with ideal constraints 
–  GPEC will solve non-ideal force balance with arbitrary jump conditions, which will be 

matched with inner-layer solver 
–  POCA will use 3D perturbations from IPEC, and provide anisotropic pressure tensor to 

GPEC 
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GPEC!

IPEC with arbitrary jump 
conditions at rational surfaces!

IPEC with additional forces at 
irrational surfaces !

IPEC! Anisotropic pressure calculator 
in drift-kinetic regime !

Delta-prime calculator for 
inner-layer physics!
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POCA improved a prediction on NTV in NSTX -2 

•  NTV is calculated for NSTX error field correction experiment 
–  Selected discharge 132729 is a case of IEFC=750A, which produced a strong magnetic 

braking (Ip=1.1MA,  BT0=0.55 T) 
–  Discrepancies are found in damping and NTV profiles: POCA predicts weaker NTV at 

inner and edge region and stronger NTV elsewhere 
–  Total NTV torque still agrees well: Experiment 5.1 Nm  /  POCA 3.5 Nm (#132729) 

–  Even though large discrepancies with measurement, POCA and theory show a similar 
profile shape; Check would be necessary for interpretation of measurements 

[S.P. Gerhardt, PPCF (2010)] !
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POCA shows a good convergence even in experiment 

36 

•  Convergence has been tested by scanning test particle number 
‒  δf particle simulation is acceptable, but still needs improvement for efficiency 
–  N=103~5x105 have been tested for DIII-D #145117 
–  Good agreements with N over ~5x103 have been found, indicating the computational 

efficiency can be improved using small number of test particles 
–  Most time-consuming part is an interpolation of magnetic field, which will be considered 

for future upgrade 



NSTX-U Physics Meeting – POCA Application (Kimin Kim) ! June 3, 2013!

POCA has been successfully benchmarked in Axisymmetry  

37 

€ 

jb ∝
1

1+ ν* + aν*

Momentum conserving!
Non-conserving!

Convergence!

Bootstrap !
current!Diffusion!

Momentum!

[R.B. White and M.S. Chance,  Phys. Fluids B 27, 2455 (1984)] ! *[F.L. Hinton and M.N. Rosenbluth, Phys. Fluids 16, 836 (1973)]!
 **[M. Sasinowski and A.H. Boozer, Phys. Plasmas 2, 610 (1995)]!

*!
**!
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POCA was compared with 1/ν theory 

•  NTV approaches 1/ν regime as 
collisionality increases 

–  1/ν formula indicates stronger resonance 
but weaker non-resonance 

–  Magnetic precession and regime 
overlapping by Maxwellian energy 
distribution in POCA and combined 
formula cause broader NTV profiles than 
1/ν formula 

•  High energy particle impacts on NTV 
–  High energy particles in the Maxwellian 

tails strongly impact at the non-resonant 
flux surfaces 

–  In the high collisionality, collisions are 
found to become more dominant than the 
high energy particle effects 
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Bounce-harmonic resonance has been found for KSTAR 
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