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Full-f XGC-DEGAS2 family codes

e XGCO: Drift-Kinetic neoclassical code using a ®(W) solver

— Managed by R. Hager
— Distributed to KSTAR, Tech-X, GA, Max-Planck, JET, ...

* XGCa: Gyrokinetic neoclassical code using a ®(W,0) solver
— Managed by R. Hager

e XGC1 (topic for today): Gyrokinetic turbulence-neoclassical

code in a diverted geometry using a ®(W,6, ¢) solver
— Managed by S. Ku and J. Lang
— Distributed to WCl and UCSD, but too large to run

e XGCp: Gyrokinetic turbulence-neoclassical code in circular flux

surface geometry
— Managed by S. Ku
— Distributed to CEA, WCI, UCSD, ...



Outline

Introduction: How different is XGC1 from other GK codes?

Edge-core
— There is no turbulence shortfall toward pedestal top in XGC1
— “Turbulence + Heating + Cooling” brings the profile to SOC

Central core: Turbulence spreads into central core

Pedestal-SOL: dominated by neoclassical physics and “blobs”
— CTEM-type turbulence brings the turbulence back in H-mode layer
— Momentum transport and particle fueling into core
— L-H transition
— Pedestal structure and height: can start from electrstatic
— H-L back-transition and ELMs: requires E&M

3D magnetic perturbation and turbulence
Impurity and turbulence

PMI from plasma side

— Scrape-off transport, heat-load footprint and material migration
— Consistency between scrape-off turbulence and wall-sheath

— Current circulation



XGC does not use the conventional 6f assumptions

« Gyrokinetic Vlasov equation in full-f
df/dt = Lf= C(f) + Source + Sink
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In a local code, RHS 1s assumed constant, even though it is not constant over a
wavelength in ITB or ETB.



Instabilities in ETB or ITB are highly nonlocal.
XGC1 does not use “constant” driving terms or variables.
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« If super critical at one point, but subcritical elsewhere, will turbulence

survive? Vice versa.
« This question is valid across different modes because longer waves

enable coupling/excitation of shorter waves non-locally = Inclusion of
longer waves is important.



XGC1: X-point included Gyrokinetic Code

» Uses experimental EFIT data
— Magnetic fields
— Divertor and limiter geometry

* Full-f GK ions and drift-kinetic
electrons: Neoclassical and
turbulence physics together

— ITG, TEM, resistive ballooning,
drift waves, ...

— ETG capable, only more
expensive to run

— E&M (tearing, KBM, ..) to come in ~1 year

 Particle-energy-momentum conserving Coulomb collisions

— Linear Monte-Carlo collision
— Fully nonlinear Fokker-Plank-Landau collision on v-space grid

* Neutral Monte-Carlo routine with CX and ionization cross-sections
 Impurity particles, radiation physics: being transferred from XGCO



XGC1 uses a fully nonlinear FPL collision operator

* We have both linear-based Monte Carlo operator and fully non-linear Fokker-

Planck-Landau operator, in both XGCO0 and XGC1
« Chang-Hinton has been reproduced from nonlinear collisions within <20%
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XGC-DEGAS2
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Multi-physics in XGC1
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Introduction: How different is XGC1 from other GK codes?

Edge-core
— There is no turbulence shortfall toward pedestal top in XGC1
— “Turbulence + Heating + Cooling” brings the profile to SOC

Central core: Turbulence spreads into central core

Pedestal-SOL: dominated by neoclassical physics and “blobs”
— CTEM-type turbulence brings the turbulence back in H-mode layer
— Momentum transport and particle fueling into core
— L-H transition
— Pedestal structure and height: can start from electrstatic
— H-L back-transition and ELMs: requires E&M

3D magnetic perturbation and turbulence
Impurity and turbulence

PMI from plasma side

— Scrape-off transport, heat-load footprint and material migration
— Consistency between scrape-off turbulence and wall-sheath

— Current circulation
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XGC1 does not have the “turbulence short falls”
even with ITG turbulence alone

(Natural BD condition, full-f and driven by heat-flux)
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Before the VT, decay without neutrals

(For comparison with a delta-f code)
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Radial ion power balance achieved with ITG
turbulence (it is a ms-type dynamic balance!)
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Saturated T, profile is different without
neutrals in XGC1

1600

1400

Notice nonlocal neutral effect on dT./dr
reaching to pedestal top, from non-
local banana smoothing.

1200 -

1000 -

800 -

% Flattening
of VT,
continues

Ton temperaure (ev)

600 - ’)

Q
%,
400~ VT, achieved
SOCat 5.2 ms
200 -
8.8 0.:35 0:9 0:95 1I 1.I05 1.1

Mormalized poloidal flux psi 15



etai

Neutrals increase 1), at In steep H-mode gradient

density pedestal top region, 1), stays low ~1
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EXB shearing rate is weaker with neutrals in the edge
pedestal = higher turbulence level
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XGC1 shows that the edge turbulence is even

stronger with nonlinear ITG+CTEM interaction.
(Natural BD condition, full-f and flux driven)

Turbulence intensity outside midplane
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T. advances to stiff self-organized criticality

* TRIGINITY, TGYRO, etc: “Scale separation assumption. Turbulence simulation in small
regions of the space-time grid, embedded in a coarse grid on which fluid transport
equations are evolved” [M. Barns et al, PoP2010]

« XGCA1: f contains all scale turbulence and transport physics without scale
separation, together with heat/torque source and neutral particles

* Plasma profile in XGC1 evolves while maintaining “stiff” self-organized criticality:
Edge T, determines core T,.
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Self-organizing interaction between outward heat
bursts by turbulence and E’xB control of turbulence

The self-organizing interactions can be clearly seen in the bursty initial stage
Similar interactions at smaller scale exists at later time in the form of avalanche

Temperature perturbation information at edge propagates to core in this fashion, taking <5 ms in
DIII-D: cold/hot pulse experiment, propagation speed ~ 0.3 km/s ~ 1.7 p;46Vi06) /Ro™ 0-4 Vs

Global T, and turbulence settle down in ~10 ms. H-layer
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Outline

Introduction: How different is XGC1 from other GK codes?

e Edge-core

— There is no turbulence shortfall toward pedestal top in XGC1
— “Turbulence + Heating + Cooling” brings the profile to SOC

Central core: Turbulence spreads into central core

Pedestal-SOL: dominated by neoclassical physics and “blobs”
— CTEM-type turbulence brings the turbulence back in H-mode layer
— Momentum transport and particle fueling into core
— L-H transition
— Pedestal structure and height: can start from electrstatic
— H-L back-transition and ELMs: requires E&M

* 3D magnetic perturbation elevates turbulence level
* Impurity transport and turbulence

* PMI from plasma side
— Scrape-off transport, heat-load footprint and material migration
— Consistency between scrape-off turbulence and wall-sheath
— Current circulation
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where the turbulence drive is
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Many interesting physics to be studied,
including internal transport barrier.



A sign of internal transport barrier formation at the
boundary between the subcritical and SOC regions!
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Outline

Introduction: How different is XGC1 from other GK codes?

Edge-core
— There is no turbulence shortfall toward pedestal top in XGC1
— “Turbulence + Heating + Cooling” brings the profile to SOC

Central core: Turbulence spreads into central core

Pedestal-SOL: dominated by neoclassical physics and “blobs”
— CTEM-type turbulence brings the turbulence back in the H-mode layer
— Momentum transport and particle fueling into core
— L-H transition
— Pedestal structure and height: can start from electrostatic turbulence
— H-L back-transition and ELMs: requires E&M

3D magnetic perturbation elevates turbulence level
Impurity transport and turbulence

PMI from plasma side

— Scrape-off transport, heat-load footprint and material migration
— Consistency between scrape-off turbulence and wall-sheath

— Current circulation
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Turbulence intensity

XGC1 finds that, unlike ITG alone, the nonlinear
ITG+CTEM turbulence can fill up the H-mode layer.

(A little different plasma profile between these two)

Turbulence intensity outside midplane
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Could this mean that 1) ITG is dominant right after L-H transition, and that 2) as edge
T-pedestal grows, the CTEM type turbulence (with E&M effect) makes turbulence to
come back in the H-layer? Relation with ELMs?
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Gyrokinetic dynamics of nonlinear coherent potential
_structures (“blobs”) across separatrix at outside midplane.

Notice that the blob amplitude is ~50%
Pot.fl’e t=0.002 ms
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: Measured at 0.96<W, <1
The nonlinear coherent x10”

structures are composed | |
of blobs and holes 3
N o
ISG)
* Blobs move radially outward v 05
and holes move inward ) 1 6 1 2

 Similar to observations from Time (s) x10°
HL-2A experiment |

— M. Xu et. al., IAEA 2012

* Blobs and holes carry physics

information with them
— mass, heat, and momentum

' —Co-mu:). <0:
«— Mmostly blobs |
from ¥, <0.98

<®v,> m/s
o

—w>0: 1
¥~ mostly holes
from ¥\ <0.98

2 E 0 ] 2
Time (s) x10

27



Rotation is generated at edge and pinched
inward in XGC1 (& in experiments: Rice et al)

 Strong neoclassical co-rotation at edge: Pfirsch-Schulter and orbit loss
* Turbulent residual-stress driven inward pinch of edge rotation (by holes)

S. Muler et al, PoP 2011, L-H transition

v, at the outboard midplane L
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Inward cold-particle pinch at W>0.8: It increases with neutral
particles: Holes are colder. (Figures are from ITG turbulence)
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Mean V., ; and vorticity w from XGC1 in the
presence of blobs and holes

Stronger negative vorticity means stronger ExB shearing rate in H-layer
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The negative vorticity merges to ¥,=0.98,
strengthening the neoclassical EXB shearing rate.

Vorticity merging
from XGC1 in a
DIIlI-D plasma.

100

Co-vorticit

Highly plausible
trigger of L-H
transition [a la,
Diamond et al]

Vorticity merging
observed on HL-2A,
M. Xu, IAEA2012
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Electro-Magnetic turbulence capability in XGC1
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Cross verification of fluid Alfven wave Low beta ITG turbulence in
frequency in fluid-particle hybrid scheme electromagnetic split-weight scheme

Currently both algorithms are in XGC1
KAM verification is on the next action item
These two E&M methods to be converted to diverted geometry

Gyrokinetic tearing-ELM capability is on our next plan in XGC1 (J.

Lang with U. Colorado).
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Validation of the basic neoclassical +
turbulence capabilities of XGC1 on NSTX
= Application to NSTX-U

 How well (badly) do the full-f neoclassical + electrostatic
turbulence compare with the existing NSTX data in edge-core,
scrape-off layer, and in the central core? [Ku, Lang, Hager]

e Can we understand the L-H transition physics with neoclassical

+ electrostatic turbulence? [in 2013, S. Ku, J. Lang and Hager]
— Pedestal structure?

* How much improvement will we get if we add the E&M
turbulence? [in 2014, S. Ku]

 What if we add impurities? [work in progress, K. Kim]
 What if we add 3D field? [work in progress, Hager and Ku]
e Understand ELMs from gyrokinetic physics? [2014, J. Lang]
* Circulation current in SOL?
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— There is no turbulence shortfall toward pedestal top in XGC1
— “Turbulence + Heating + Cooling” brings the profile to SOC
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Pedestal-SOL: dominated by neoclassical physics and “blobs”
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— Momentum transport and particle fueling into core
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3D magnetic perturbation and turbulence
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— Scrape-off transport, heat-load footprint and material migration
— Consistency between scrape-off turbulence and wall-sheath
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3D perturbations affect global turbulence and transport.

They must be included for quantitative understanding of NSTX and

NSTX-U plasma property.

Example: RMP effect on ITG
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. —— W/ RMP
* RMPs with plasma
response has been solved ol

in XGCO

* The perturbed B-field is
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by 3D enhances turb. level
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XGCO0 says, at n./n,.=10%, Li moves outward
while C*® moves inward at y,<1.

Radial transport speed profiles

60 T | | | T T
Li influx rate across the pedestal is low. Mgg}ggg _v__x,,-’__
40 “No sign of Li accumulation in core” \ .
20 | xox . AR
_ ” y i K EKy 4 .;.gy;‘_.'y:«gg-‘ ,-(\). .l X
o e ». * Hoge -2 VRV S8 X ? J . . y
8 0 hE oy )t* x - |
£ X *x
8 xx_xxx Xx x
g 20t X x
g Xy X7 g
§ X'X.xx,xx'x'x. XX_)(,X * " -x-X-x.x X
S 40 - : . x. ,
£ Large influx of ionized C gy
o across pedestal o
. Reduction of C and Liin a
] thin layer toward separatrix
-100 1 1 ] ] 1 1
0.4 05 0.6 0.7 08 09 1

Normalized poloidal flux
37



Impurity ions can affect turbulence significantly
ITG =2 Impurity modes

In addition to the neoclassical impurity capability, a turbulence
impurity physics capability is being added to XGC1.

A cross-verification with T
GYRO, GS2, and Dong- dal .
Horton has been reasonably 0.4% e A"
successful. g 03f 7
Impurity collision and v XGC1

. L. . . 3 GYRO
radiation routines are being 0.1l . O ‘
moved from XGCO N S ol e

00 01 02 03 04 05 06

[Kyuho Kim, part of PhD Carbon fraction

thesis research, KAIST]



Multiple aspects of Li transport and its effects
on plasma confinement can be studied in XGC1

* Li transport itself is influenced by neoclassical and turbulence
e Radiation
* Through effect on neutral particle recycling
— Neutrals can affect plasma profiles
— Neutrals can affect plasma turbulence
Through direct effect on turbulence
— Generation of impurity modes —>Li transport
— Effect on other turbulence modes
Plasma aspect of Li PMI
— Neoclassical and turbulence consistent // and L sheath potential
— Globally consistent plasma impingement on the wall
— Li migration in scrape-off
XGC1 can easily be converted to MAGNUM-PSI geometry for
code validation

A reliable PMI model/data is heeded

—Li transport
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Indirect effect of Li on plasma profile, through
modification of neutral recycling, can be studied in XGC1:
both neoclassical and turbulent
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local banana smoothing.
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Li effect on EXB shearing rate can be validated 2>
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Li effect on the k-spectrum of edge turbulence
can be validated in NSTX/NSTX-U

Turbulence spectrum in toroidal mode number n shows
that the neutrals shift the turbulence to the long
wavelength structure.
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Li effect on turbulence frequency spectrum

Heat transport spectrum at low frequency is reduced by
neutrals, though.
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XGCO0 shows that neoclassical physics sets the basis
for the 1IIE°‘ heat flux width behavior (2010 JRT)

85 0 o7 08 g9

0 mg Li: «=1.6
150 mg Li: a=1.1
300 mg Li: a=0.4
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IAEA: T.K. Gray, J-W Ahn, ORNL P

*Joint Research Target (3 U.S. Facilities)

» Divertor heat flux width decreases with
increased plasma current Ip

Agmid ~ | = <__.————-— — Potentially major implications for ITER

— NSTX: )\qm“’ further decreases with Li

- NSTX Upgrade with conventional divertor
(LSN, flux expansion of 10-15) projects to
very high peak heat flux up to 30-45MW/m?
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Neoclassical physics:

XGCO shows A,md Iy, where o is
function of collisionality, with some
broadening by radial anomalous transport.
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Outline/Summary

Introduction: How different is XGC1 from other GK codes?
e Edge-core
— There is no turbulence shortfall toward pedestal top in XGC1
— “Turbulence + Heating + Cooling” brings the profile to SOC
Central core: Turbulence spreads into central core
Pedestal-SOL: dominated by neoclassical physics and “blobs”
— CTEM-type turbulence brings the turbulence back in H-mode layer
— Momentum transport and particle fueling into core
— L-H transition
— Pedestal structure and height: can start from electrstatic
— H-L back-transition and ELMs: requires E&M

* Penetration of 3D magnetic perturbation and turbulence
* Impurity and turbulence

* PMI from plasma side
— Scrape-off transport, heat-load footprint and material migration
— Consistency between scrape-off turbulence and wall-sheath
— Current circulation
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