#### Motivation

- Lithium wall conditioning improves plasma performance, in part, by enhancing deuterium retention.
- Fundamental understanding of how lithium improves retention can be used to improve its application and applicability to other systems.

#### Results

- X-ray photoelectron spectroscopy immediately identifies oxygen as a prominent constituent.
  - Oxygen concentration in lithiated graphite increases from  $^{8}$ % to  $^{20}$ % over the course of 100 hours sitting in UHV ( $10^{-10}$  mbar).
  - Oxygen concentration increases to  $\sim$ 20% during a 1 minute deuterium ion irradiation (3.9x10<sup>15</sup> cm<sup>-2</sup>).
- Connection to theory.
  - DFT simulations compare graphite matrices with and without oxygen and lithium, and reveal that deuterium preferentially binds with oxygen instead of lithium.
  - Simulations suggest that greater retention occurs with high amounts of oxygen (~20%) and no lithium.
- In experiments, oxygen was implanted in graphite to achieved ~20% surface concentration. Subsequent deuterium implantation released all of the implanted oxygen, thus precluding enhanced retention.

## Conclusions

- Oxygen-deuterium binding is the primary mechanism for enhanced deuterium retention in lithiated graphite.
- Lithium plays an indispensible role of gettering and retaining oxygen.

### Future work

 As oxygen plays a critical role in retaining deuterium, determine the relative contribution of potential oxygen sources: 1) ambience, 2) substrate, 3) lithium deposit.

# Useful PPPL contributions

— Provide the RGA data from a 'typical' run. How does the oxygen behave during lithium evaporation? During shot?