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Introduction

» Two projects for theory and simulation research at NFRI

* |nternal theory & simulation project

- One of KSTAR research projects
- covering Pedestal, MHD stability, Operation scenario, Divertor/SOL areas
- now, about 8 regular members & 6 graduate students from SNU, KAIST etc.

= WCI (world-class-institute) project

- A government-support project for 5 years (2009.12 — 2014. 11)
- mostly focusing on Turbulent transport, including transport barrier, area
- now, about 11 regular members (Korean: 7, Foreigner : 4)
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Pedestal and ELM control

- Strong emphases in relation to the H-mode and ELM control experiments
in KSTAR, and also as ITER urgent issues

- trying to cover most sub-areas with a more self-consistent, integrated
modeling

* L-H transition trigger & power threshold
* Pedestal build-up process

* Pedestal stability and structure

* Nonlinear ELM behavior

* ELM control by RMP, pellet etc.
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L-H transition and power threshold

* One of the main research topics of the WCI group
* Focusing on the 1.5D predator-pray model, involving turbulent intensity, ZF, MF
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« trying to do a more self-consistent simulation with the study of power threshold scaling
« A more accurate calculation of neoclassical Er (by grad-Pi or ion orbit loss) also underway
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Pedestal build-up

* Recent experiments show pedestal structure change during build-up phase, such as
- inward penetration of width with the early saturation of gradient
- different pedestal width evolution of n, T, V, etc.

« Asimple 1.5D transport code under development to model the build-up process
- In the consideration of ExB shear stabilization & KBM-like mode excitation
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« Also, a flux-driven simulation using the global BOUT++ code underway for a more
self-consistent calculation of the pedestal build-up process including turbulence dynamics

KSTAR



Pedestal stability and structure

« Particularly important from its close relevance to the global performance
« A more theory-based model, EPED one, proposed recently for the pedestal structure

» A predictive calculation of KSTAR pedestal structure done using the EPED model
with a more detailed study on various parameter dependence (l,, B, n, v*, shape etc.)
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- Pedestal height rapidly increases with I, («x I51°) => an important role to 1g , « 5,097

- Pedestal width almost independent of I, => no relevance to poloidal ion Lamar radius
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Nonlinear ELM behavior

« ELM is believed to be due to the destabilization of the P-B mode, but still not clear
- how the nonlinear destabilization occurs
- what is the origin of different ELM types (type-l, Il, lll, small ELMs etc.)
- how ELM behavior change occurs with various ELM control tools

* Nonlinear simulation started using M3D & BOUT++ (in collaboration with PPPL/LLNL)
- linear benchmark done first between M3D-ELITE for the CBM18 circular plasma

- nonlinear simulation being performed for the CBM18 & D-shape KSTAR plasmas
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ELM control (Pellet, RMP etc.)

 RMP control : RMP field penetration
calculated for KSTAR plasma using
XGCO + M3D codes

* Pellet pace-making : a preliminary
simulation done for the KSTAR plasma
model using M3D
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- ELM generation observed with pellet injection

- Strong shielding occurs, except near
pedestal top in the +90 phase
= may explain why RMP suppression

observed only in +90 phase?
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MHD Stability and Energetic Particles

- Now, focusing on the subjects related to the KSTAR initial experiments,
with relatively small manpower

* Sawtooth and internal MHD modes with ECH/ECCD effect
* Disruption load and characteristics in KSTAR model
* Fast ions loss with 3D perturbed field
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Sawtooth & Internal MHD modes with

ECH/ECCD effect

« Several interesting behaviors observed with ECH/ECCD in KSTAR
- Dual flux tubes in the core of sawtoothing plasma [G.S. Yun et al, PRL(2012)]
- Excitation of internal MHD modes, as a possible source of rotation damping [J. Seol et al, PRL(2012)]
- Destabilization of 2/1 tearing mode during ramp-up (H.H. Lee et al., recently accepted in PRL)

» These believed due to energetic electron itself or change of g-profile

« Asimulation study started using NIMROD code to see the energetic electron effect
- similar method with the energetic ion case, but with the change of mass and charge

* Up to the artificial M_>0.01M;,, no big difference between energetic ions and electrons, and
some destabilization of internal MHD mode observed near g, ~1
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Disruption load and characteristics in KSTAR

 KSTAR passive stabilizer modified to no saddle structure during the final fabrication phase

» Disruption simulation done using TSC to estimate the load for the new structure
- about one order increase in growth rate, while about 6 times decrease in vertical force

VDE simulation using TSC
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A more detailed 3D simulation using M3D code to be performed (in collaboration with PPPL)
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Fast ions loss with 3D perturbed field

« Experimental study being performed in KSTAR for the fast ions loss due to the external
applied edge magnetic field in relation to ELM control by RMP

- fast ions orbit being calculated using the Lorentz-orbit code, to analyze the data
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» Various energetic particles driven modes being also observed in KSTAR
- Linear stability analysis and nonlinear simulation study to be performed soon

KSTAR



Operation Scenario and Divertor/SOL

- Now, focusing on the near-term KSTAR operation scenarios, in relation to
the upgrade of KSTAR heating/CD & divertor/fueling systems

* Hybrid scenario and heating/CD optimization for the 2"d phase
* Detached divertor operation

- Relatively small manpower, particularly in divertor/SOL area
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Hybrid scenario & Heating/CD system optimization,

« Some design issues in relation to the upgrade of KSTAR heating/CD systems
- NBI2 : on-axis or off-axis, co or counter
- LHCD : optimum n; value for the CD efficiency maximization

Hybnd scenario mode"ng by using CRONOS KSTAR LHCD calculation b\ using C3PO/LLUKE
(for Pyg = 4MW(co, on)+2MW(co, off-axis), P¢cy = 2MW)
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Detached divertor operation & Gas-puffing system

optimization

Average Flux on the Outer Divertors
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 Gas puffing on the PFR region is attractive
to control neutral particles outside passive
plates.

* When gas puffed on the PFR region, Heat
flux decreased more effectively compared
with OMP gas puffing cases.

» Gas puffing on the PFR region makes
detachment when gas puffed more than
7x1021D,/s.




Plasma-wall Interaction

« A preliminary simulation study of erosion, deposition rates of C in KSTAR divertor plate being
performed through the coupling of B2 and ERO codes

- Initial results show how erosion & deposition rates increase with heating power
in the relatively low divertor-region plasma temperature case (Te ~Ti ~ 1-10eV)
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Turbulence and Transport

- Extensive studies being performed for various subjects, such as

* intrinsic rotation

* |TB formation

* ETB formation

* non-local transport etc.

- Also, a substantial effort being made for the development of the global
(or full-f) codes, based on the gyrofuild, gyrokinetic, and hybrid schemes

* global electromagnetic gyrofluid code based on BOUT++
* full-f electrostatic gyrokinetic code using semi-Lagragian method
* full-f electromagnetic hybrid code by combining ion-gyrokinetic & electon-fluid
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Gyrokinetic simulation study of intrinsic rotation

generation

19

« Sign flip in intrinsic torque observed with the dominant turbulence transition between
TEM « ITG from the simulation using gKPSP code (6f PIC gyrokinetic code)

» Dipolar pattern of intrinsic flow profile — boundary condition decide net sign of rotation in

plasma
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* Rotation damping observed in ECH plasma may due to ITG — TEM transition & resulting
torque reversal (experimental data analysis underway)
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Development of global EM gyro-fluid code

» Aglobal core gyrofluid code developed using BOUT++ framework (LLNL collaboration)
» Linear calculations for ITG show excellent agreements with gyro-kinetic results
« Initially, nonlinear simulation underway for the flux-driven ITB formation (with non-resonant

modes), as well as ETB formation
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Development of full-f ES gyro-kinetic code

* using Semi-Lagrangian scheme to combine the advantages of both PIC and continuum

codes
» Coulomb collision operator included for full neoclassical physics simulation

» General geometry i.e. shaped equilibrium configuration
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Development of full-F ES gyro-kinetic code

* Almost finished in the electrostatic limit

« Benchmark test results are in good agreement with theory and previous works.

Linear ITG simulation

with cyclone parameters Neoclassical benchmark test
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* Nonlinear benchmark simulation to be performed soon

* The code will be also extended to the EM code by using hybrid scheme
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Summary

» Theory and simulation research for KSTAR at NFRI now being performed over

most areas through the two projects (WCI & internal)

» Relatively, strong emphases being put on the Pedestal and ELM control area in

relation to H-mode experiments in KSTAR

= A substantial effort also being made for the Turbulence and Transport area, with
the development of global (or full-f) integrated simulation codes, based on the

gyrofluid, gyrokinetic, and hybrid schemes

» Research activities in other areas, such as MHD stability, energetic particles,

operation scenario, divertor/SOL are still relatively weak

= So, particularly hoping to increase more collaborations on these areas
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Future Collaboration Opportunities (PPPL)

Energetic particles
- Linear stability analysis and nonlinear simulation of TAE, BAE, EPM etc.

- Transport effect by energetic particle driven modes etc.

MHD stability & disruption
- 3D physics, Linear MHD stability analysis of LM, NTM, RWM etc.
- Nonlinear simulation of resistive MHD modes

- 3D disruption simulation with 2D or 3D structure model etc.

Operation scenario and Divertor/SOL
- Advanced operation scenario modeling for KSTAR

- Plasma-wall interaction modeling etc.

Transport and Pedestal

- Global integrated simulation over whole region using full-f gyrokinetic or hybrid code etc.
KSTAR



