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3 Introduction  

 Two projects for theory and simulation research at NFRI 

 

 Internal theory & simulation project 
 

   - One of KSTAR research projects 

   - covering Pedestal, MHD stability, Operation scenario, Divertor/SOL areas 

   - now, about 8 regular members & 6 graduate students from SNU, KAIST etc. 

 

 WCI (world-class-institute) project 
 

   - A government-support project for 5 years (2009.12 – 2014. 11) 

   - mostly focusing on Turbulent transport, including transport barrier, area 

   - now, about 11 regular members (Korean: 7, Foreigner : 4) 
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Pedestal and ELM control  
 
- Strong emphases in relation to the H-mode and ELM control experiments 

in KSTAR, and also as ITER urgent issues  

 

- trying to cover most sub-areas with a more self-consistent, integrated 

modeling 

 
     * L-H transition trigger & power threshold 

     * Pedestal build-up process 

     * Pedestal stability and structure 

     * Nonlinear ELM behavior  

     * ELM control by RMP, pellet etc. 



L-H transition and power threshold 
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• One of the main research topics of the WCI group 

• Focusing on the 1.5D predator-pray model, involving turbulent intensity, ZF, MF 

• Reproduce some 

features of L-I-H 

transition 

• I-phase identified as a 

multi-predator-prey 

oscillations of ZF, mean 

flow and intensity 

• Oscillating ZF as a 

trigger to L-H transition  

• trying to do a more self-consistent simulation with the study of power threshold scaling 

• A more accurate calculation of neoclassical Er (by grad-Pi or ion orbit loss) also underway 



Pedestal build-up 6 

• Recent experiments show pedestal structure change during build-up phase, such as 

     - inward penetration of width with the early saturation of gradient 

     - different pedestal width evolution of n, T, Vt etc. 

 

• A simple 1.5D transport code under development to model the build-up process 

      - in the consideration of ExB shear stabilization & KBM-like mode excitation 

• Also, a flux-driven simulation using the global BOUT++ code underway for a more  

     self-consistent calculation of the pedestal build-up process including turbulence dynamics 
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Pedestal stability and structure 7 

• Particularly important from its close relevance to the global performance 
 

• A more theory-based model, EPED one, proposed recently for the pedestal structure 
 

• A predictive calculation of KSTAR pedestal structure done using the EPED model 

    with a more detailed study on various parameter dependence (Ip, B, n, v*, shape etc.)  

  -  Pedestal height rapidly increases with IP (∝ IP
1.5) => an important role to τE, H ∝ IP

0.97 

 

  -  Pedestal width almost independent of IP  => no relevance to poloidal ion Lamar radius 

 

 (a) IP dependence at a fixed BT = 2T  (b) IP dependence at a fixed q95 = 3.5 
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P-B unstable 
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Nonlinear ELM behavior 
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• ELM is believed to be due to the destabilization of the P-B mode, but still not clear 

    - how the nonlinear destabilization occurs 

    - what is the origin of different ELM types (type-I, II, III, small ELMs etc.) 

    - how ELM behavior change occurs with various ELM control tools 

 

• Nonlinear simulation started using M3D & BOUT++ (in collaboration with PPPL/LLNL) 

    -  linear benchmark done first between M3D-ELITE for the CBM18 circular plasma 

    -  nonlinear simulation being performed for the CBM18 & D-shape KSTAR plasmas 

    Dominant mode changes from medium-n  

    to low-n during the nonlinear evolution 

    Relatively good agreement  

  between M3D and ELITE codes  

CBM-18 model 



ELM control (Pellet, RMP etc.) 
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• Pellet pace-making : a preliminary 

simulation done for the KSTAR plasma 

model using M3D 

Vacuum, +90 phase 

Plasma, +90 phase 
)(GBmn

Plasma, mid-FEC alone 

Vacuum, mid-FEC 

alone  

N 

  -  Strong shielding occurs, except near    

     pedestal top in the +90 phase 

 may explain why RMP suppression 

observed only in +90 phase? 

- ELM generation observed with pellet injection 

• RMP control : RMP field penetration 

calculated for  KSTAR plasma using 

XGC0 + M3D codes 



MHD Stability and Energetic Particles 
 

-  Now, focusing on the subjects related to the KSTAR initial experiments,  

    with relatively small manpower 
 

          * Sawtooth and internal MHD modes with ECH/ECCD effect 

          * Disruption load and characteristics in KSTAR model 

          * Fast ions loss with 3D perturbed field 

 



Sawtooth & Internal MHD modes with 

ECH/ECCD effect 11 
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• Several interesting behaviors observed with ECH/ECCD in KSTAR 
      - Dual flux tubes in the core of sawtoothing plasma [G.S. Yun et al, PRL(2012)] 

      - Excitation of internal MHD modes, as a possible source of rotation damping [J. Seol et al, PRL(2012)] 

      - Destabilization of 2/1 tearing mode during ramp-up (H.H. Lee et al., recently accepted in PRL) 
 

• These believed due to energetic electron itself  or change of q-profile 
 

• A simulation study started using NIMROD code to see the energetic electron effect 

     -  similar method with the energetic ion case, but with the change of mass and charge 
 

• Up to the artificial Me>0.01Mi, no big difference between energetic ions and electrons, and 

some destabilization of internal MHD mode observed near q0 ∼1 

 

q0=0.98 q0=1.
3 

with 
energetic  
electrons 

without  
energetic 
electrons 



  Disruption load and characteristics in KSTAR 12 

• KSTAR passive stabilizer modified to no saddle structure during the final fabrication phase  
 

• Disruption simulation done using TSC to estimate the load for the new structure 

    -  about one order increase in growth rate, while about 6 times decrease in vertical force  

No saddle 

VDE simulation using TSC 

Vertical force 
(old model) 

• A more detailed 3D simulation using M3D code to be performed (in collaboration with PPPL) 

        

Saddle loop with current bridge 

Vertical force 
(new model) 



Fast ions loss with 3D perturbed field 
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• Experimental study being performed in KSTAR for the fast ions loss due to the external 

applied edge magnetic field in relation to ELM control by RMP  
 

  - fast ions orbit being calculated using the Lorentz-orbit code, to analyze the data 

Shot# 9092, near t=6.0sec Shot# 9056, near t=5.0sec 

C-port (FILD position) C-port (FILD position) K-port 
(opposite position) 

K-port 
(opposite position) 

• Various energetic particles driven modes being also observed in KSTAR 

   - Linear stability analysis and nonlinear simulation study to be performed soon  
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Operation Scenario and Divertor/SOL  

 
  - Now, focusing on the near-term KSTAR operation scenarios, in relation to 

    the upgrade of KSTAR heating/CD & divertor/fueling systems 

 
    * Hybrid scenario and heating/CD optimization for the 2nd phase 

    * Detached divertor operation 

 

  - Relatively small manpower, particularly in divertor/SOL area 



15 Hybrid scenario & Heating/CD system optimization  

•  Some design issues in relation to the upgrade of KSTAR heating/CD systems 

    - NBI2 : on-axis or off-axis, co or counter 

    - LHCD : optimum nll value for the CD efficiency maximization 
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Detached divertor operation & Gas-puffing system  

optimization  

• Gas puffing on the PFR region is attractive 
to control neutral particles outside passive 
plates. 

• When gas puffed on the PFR region, Heat 
flux decreased more effectively compared 
with OMP gas puffing cases. 

• Gas puffing on the PFR region makes 
detachment when gas puffed more than 
7x1021D2/s. 
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• A preliminary simulation study of erosion, deposition rates  of C in KSTAR divertor plate being  

     performed through the coupling of B2 and ERO codes 

 

   - Initial results show how erosion & deposition rates increase with heating power 

     in the relatively low divertor-region plasma temperature case (Te ∼Ti ∼ 1-10eV) 

Plasma-wall Interaction     
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Turbulence and Transport 

 
 -   Extensive studies being performed for various subjects, such as  
 

      * intrinsic rotation 

      * ITB formation 

      * ETB formation  

      * non-local transport etc. 

 

- Also, a substantial effort being made for the development of the global  

    (or full-f) codes, based on the gyrofuild, gyrokinetic, and hybrid schemes 
 

      * global electromagnetic gyrofluid code based on BOUT++ 

      * full-f electrostatic gyrokinetic code using semi-Lagragian method 

      * full-f electromagnetic hybrid code by combining ion-gyrokinetic & electon-fluid  
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Gyrokinetic simulation study of intrinsic rotation 

generation  

• Sign flip in intrinsic torque observed with the dominant turbulence transition between  

     TEM  ↔ ITG from the simulation using gKPSP code (δf PIC gyrokinetic code) 

• Dipolar pattern of intrinsic flow profile → boundary condition decide net sign of rotation  in 

plasma 

• Rotation damping observed in ECH plasma may due to ITG → TEM transition & resulting 

torque reversal (experimental data analysis underway) 
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Cyclone base case  

 

 

• A global core gyrofluid code developed using BOUT++ framework (LLNL collaboration) 

• Linear calculations for ITG show excellent agreements with gyro-kinetic results 

• Initially, nonlinear simulation underway for the flux-driven ITB formation (with non-resonant  

     modes), as well as ETB formation 

 

Development of global EM gyro-fluid code 
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Development of full-f ES gyro-kinetic code 

• using Semi-Lagrangian scheme to combine the advantages of both PIC and continuum 

codes 

• Coulomb collision operator included for full neoclassical physics simulation 

• General geometry i.e. shaped equilibrium configuration 

D-shape Inverted D-shape 



22 
Development of full-F ES gyro-kinetic code 

• Almost finished in the electrostatic limit 

• Benchmark test results are in good agreement with theory and previous works. 

Heat Flux (Simulation) 

Heat Flux (Chang-Hinton Formula) 

Linear ITG simulation  
with cyclone parameters Neoclassical benchmark test 

•  Nonlinear benchmark simulation to be performed soon 

•  The code will be also extended to the EM code by using hybrid scheme   
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 Theory and simulation research for KSTAR at NFRI now being performed over 

most areas through the two projects  (WCI & internal) 

 

 Relatively, strong emphases being put on the Pedestal and ELM control area in 

relation to H-mode experiments in KSTAR 

 

 A substantial effort also being made for the Turbulence and Transport area, with 

the development of global (or full-f) integrated simulation codes, based on the 

gyrofluid, gyrokinetic, and hybrid schemes 

 

 Research activities in other areas, such as  MHD stability, energetic particles,  

operation scenario, divertor/SOL  are still relatively weak  

 So, particularly hoping to increase more collaborations on these areas 

  Summary    
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Future Collaboration Opportunities (PPPL) 

• Energetic particles 

  - Linear stability analysis and nonlinear simulation of TAE, BAE, EPM etc. 

  - Transport effect by energetic particle driven modes etc. 

 

• MHD stability & disruption 

  - 3D physics, Linear MHD stability analysis of LM, NTM, RWM etc. 

  - Nonlinear simulation of resistive MHD modes 

  - 3D disruption simulation with 2D or 3D structure model etc. 

 

• Operation scenario and Divertor/SOL 

  - Advanced operation scenario modeling for KSTAR 

  - Plasma-wall interaction modeling etc. 

 

• Transport and Pedestal 

  - Global integrated simulation over whole region using full-f gyrokinetic or hybrid code etc. 


