

Research Topics on Pedestal Physics at KSTAR

Si-Woo Yoon

on behalf of Boundary Physics Division
National Fusion Research Institute (NFRI), Daejeon, Korea
Domestic \& International Collaborators

Contents

- Characteristics of H-mode discharges

L-H transition, confinement, typical H-mode discharges, stimulated transition

- Status of pedestal diagnostics

Validation of profile \& fluctuation
profiles : Thomson Scattering, Charge Exchange Spectroscopy, Reflectometry, fluctuations :Beam emission spectroscopy, Imaging of Electron cyclotron emission

- Research topics on pedestal physics

ELM mitigation / control
(Resonant magnetic perturbation, edge ECRH, supersonic molecular beam injection)
Pedestal evolution during ELM cycle
(dynamics, mode structure)
Searching for small ELM regimes

- Near term research plan

Fast pedestal profile measurements including $j_{\|}, E_{r}, \& V_{\text {pol }}$ with cross-check
(Li-Zeeman, poloidal CES, MSE, DBS)
ELM physics/control in ITER relevant condition
Transport in pedestal region (particle pinch, turbulence, ZF)

Characteristics of H-mode discharges

KSTAR Pedestal \& ELM characteristics

NBI power scan shows type-I character $2 x$ PNBI -> $\sim 2 x f_{\text {ELM }}$

Shot 7242

Pedestal evolution in-between ELMs

Different time scales during ELM cycle (For large infrequent ELMs)

- Thermal ($\left.T_{e, \text { ped }} \& T_{i, \text { ped }}\right)$ Fast bulidup \& saturation Faster saturation of Te

- Rotation

steady increase in entire phase
Rotation (\& shear) is the main driver? (need pedestal density measurement)

Fluctuation analysis is on-going (using Edge BES)

With SMBI, Stimulated transitions found with 30\% reduced absorbed power

Triggering of $\mathrm{L}-\mathrm{H}$ \& small ELM is observed by 8 ms of SMBI

- Transition occurred for less absorbed power

$$
\begin{aligned}
& P_{\text {abs }}=P_{\text {inj }}-d W / d t-P_{\text {rad }} \\
& \text { (cyan line) }
\end{aligned}
$$

\#9077

$$
B_{T}=2.0 T
$$

Edge profile changes are accompanied for the stimulated dynamics

KSTAR

- Status of pedestal diagnostics

Proffle Reflectometry which covers full radial rance

Reflectometry Specifications	
\# of channel	3 bands (Q, V, and W)
frequency	$33.6-54 \mathrm{GHz}$ (Q band) $48-72 \mathrm{GHz}(\mathrm{V}$ band) $72-108 \mathrm{GHz}$ (W band)
time resolution	$25 \mu \mathrm{~s}$
spatial resolution	0.5 mm
maximum storage	160 ms (32 Mbytes memory)
antenna	pyramidal long horn antenna $(40 \mathrm{~mm} \times 32 \mathrm{~mm} \times 300 \mathrm{~mm})$
antenna position	antenna entrance @ $\mathrm{R}=2.624 \mathrm{~m}$

[^0]
Specification of KSTAR Thomson scattering system \sim ?

KSTAR Thomson scattering system(2013)

- Te : 10eV~1.5keV (edge), 500eV~20keV (core)
- ne : 3X10 ${ }^{12} \sim 2 \times 10^{14} \mathrm{~cm}^{-3}$
- 17spatial points (core 5, edge 12 points)
- Spatial Resolution : <10cm (core), <10mm (edge)
- Polychromator 17ea (core 5ea by NFRI, edge 12ea by NIFS)
- Laser : ~5J, 100Hz Nd:YAG Laser, 1064nm

Plasma center

5J, 100Hz, 1064nm Double laser line

- Rayleigh scattering with N_{2}
- Spectral calibration with W (tungsten) light

Charge Exchange Spectroscopy on KSTAR

http://www.nfri.re.kr

Li/D Beam Emission Spectroscopy System

Typical KSTAR Pedestal profiles

Pedestal structure both in Thomson \& CES for H -mode (further comparison is on-going)

12 National Fusion Research Institute

Initial comparison showa good correlation between ECE \& TS

Shot 9422 : Te Profile @ $\mathrm{I}_{\mathrm{TF}}=26.00 \mathrm{kA} \quad\left[\mathrm{t}_{\mathrm{ave}}=20 \mathrm{~ms}\right.$]

Value of $T_{\text {e,ped }}$ are in good agreement Position of separatices < 1 cm

ECE could be used for fast pedestal Te measurements with $B_{T}>2.6 \mathrm{~T}$

Density need better laser calibration (also with Li-BES)

13
National Fusion Research Institute

Research topics on pedestal physics

Optimal RMP configurations for KSTAR

15
National Fusion Research Institute

In 2012, ELM-suppressions have been successfully demonstrated using both $n=1$ or $n=2$ RMP

 $\mathrm{n}=1$ (+90 phase) RMP at $\mathrm{q}_{95} \sim 6.0$
$\mathrm{n}=2$ RMP (mid-FEC only) at $\mathrm{q}_{95} \sim 4.1$

A generalized criterion suggested for ELMsuppression

$$
\begin{gathered}
\# 7821(n=1,+90 \mathrm{deg}) \\
\delta B_{R}\left(\psi_{N}=0.95\right) / B_{T}=13.7 \times 10^{-4} / 1.8 \\
\sim 7.71 \times 10^{-4} \\
\# 8060(n=2, \text { mid-FEC only }) \\
\delta B_{R}\left(\psi_{N}=0.95\right) / B_{T}=10.97 \times 10^{-4} / 1.5 \\
\sim 7.31 \times 10^{-4}
\end{gathered}
$$

ELM-suppression requires
 $\delta B^{*}{ }^{*} 95=\delta B_{R}\left(\psi_{N}=0.95\right) / B_{\mathrm{T}}$
 $\delta B^{*}{ }_{\text {R95 }}>6 \times 10^{-4}$
 $\delta B^{*}{ }^{2} 95=\delta B_{R}\left(\psi_{N}=0.95\right) / B_{T}$ $\delta B^{*}{ }_{\text {R95 }}>6 \times 10^{-4}$

Similar ELM-suppression by ' +90 phased $\mathrm{n}=2$ RMP' is expected with less FEC currents if the generalized criterion is valid, since ' +90 phased RMP' is more resonant by a factor of 1.7.

ELMs suppressed using +90 phased $\mathrm{n}=2$ RMP

\#9286: $\mathrm{I}_{\mathrm{p}}=0.65 \mathrm{MA}, \mathrm{B}_{\mathrm{T}}=1.8 \mathrm{~T} \rightarrow$ $\mathrm{q}_{95} \sim 4.0$
\rightarrow ELM suppression under 6.0kAt $\mathrm{n}=2$ RMP at $\mathrm{q}_{95} \sim 4.0$

Initially ELMs mitigated by $n=2$ even (top/bot) RMP

As mid-FEC currents added ($\mathrm{n}=2,+90$ RMP), ELMs further mitigated and then suppressed

Note that ELM-suppressed phase showed better confinements than ${ }_{8}$ that in ELM-mitigated phase - See changes on $\left\langle\mathrm{n}_{\mathrm{e}}\right\rangle, \mathrm{W}_{\text {tott }}$ and $\beta_{\boldsymbol{p}}$

ELM responses to $\mathrm{n}=2$ RMP field strength

((Bifurcation))

With 6.0kA $\mathrm{n}=2$ RMP fields, ELM-mitigation was bifurcated to ELM-suppression state

Distinctive fast time scale phenomena that are directly linked to the transition to ELM-suppressed

Distinctive features observed …

- Increased base-level of D_{α}
- Saturated growth of T
- ! Increased fluctuation of $\mathrm{I}_{\text {sat }}$ on divertor
- 'Brōād̄ān̄d iñ crēāsē ō EM fluctuations

All of these "fast time-scale phenomena" were "precisely synchronized"

At the moment of transition to ELM-suppression in KSTAR \#7820. RMP was applied in whole period here

How the uniform broadband increase of EM fluctuations can be produced ?

Features of observed EM fluctuation change
(1) Broadband (actually full range up to $\sim 250 \mathrm{kHz}$) frequency
(2) Uniform spectrum power
Only possible with a bursty event such as shown in ELM-crashes

- cannot be explained with coherent MHD activities
At the moment of transition to ELM-suppression in KSTAR \#7820. RMP was applied in whole period here

> A persistent bursty event may be activated in the plasma edge, which produces broadband EM fluctuations

Rapidly increased, steady fluctuations on Ion saturation current suggests a persistent bursty event

- Rapid increase of $\mathrm{I}_{\text {sat }}$ fluctuation in the inter-ELM period
- Rapid decrease of $\mathrm{I}_{\text {sat }}$ fluctuation prior to the next ELM crash
- Precise synchronization with EM fluctuation

Spiky fluctuation on $I_{\text {sat }} \rightarrow$ bursting event
\rightarrow A persistent, rapidly repeating bursting event produces a steady spiky fluctuations on $\mathrm{I}_{\text {sat }}$

At the moment of transition to ELM-suppression in KSTAR \#7820. RMP was applied in whole period here

The persistent bursty event occurred in the plasma edge

\rightarrow The persistent bursting event in the plasma edge leads increased neutral recycling near the plasma boundary, thus increasing D_{α} emission

- Emission from CCD $\propto D_{\alpha}$
- No clear change on topology at the transition
- Only emission intensity was increased strongly

Scan of position of ECH deposition

Poloidal angle scan

Similar ELM crash but more fluctuation during ELM cycle (J. H. Lee, Postech)

w/o ECH

w ECH

KSTAR \# 9020 ECE-Image at $\mathrm{t}=5.821690 \mathrm{~s}$

Before the ECH

ring
$0-10 \mathrm{kHz}$ bandpass
Judging from ECEI, there is no significant change in mode structure Slightly higher m with ECH

有
$0-10 \mathrm{kHz}$ bandpass

NOT Calibrated image. NOT for
9) POSTECH, Center for Fusion Plasma Diagnostics and Steady-State Operation
(c) POSTECH, Center for Fusion Plasma Diagnostics and Steady-State Operation

25

Similar ELM crash but more fluctuation during ELM cycle (J. H. Lee, POSTECH)

10% drop of density
Strong pump-out at midplane injection

Low freq fluctuations (10 kHz)

Localized in pedestal
Similar modes also in density fluctuation (by D-BES)

26

Change of pedestal profile during ECH injection

ELM averaged difference of pedestal profiles

27

Temporary transition to grassy ELMs by Supersonic Molecular Beam Injection
 ion

R

\square

 \%

A simple cellular automata model predicts best mitigation case with shallow deposition of SMBI
http://www.nfri.re.kr

- Scanning SMBI deposition size and injection location

```
Cl
deposition point
(0 = pedestal top,
1 = pedestal edge)
```

$<A>\mid<A_{0}>:$ ELM amplitude ratio
($\mathrm{A}_{0}=\mathbf{w} / \mathbf{o} \mathrm{AGI}$) Region for effectiv\&f $\mathrm{f}_{0}=\mathbf{w} / \mathbf{o A G I}$)

> Pedestal base injection effectively mitigates ELM with deposition size greater than a critical level.
Critical deposition size is minimum number of grains which can drive a pedestal cell over hard limit.

Near term research plan in pedestal physics $1-2$

- Fast pedestal profile measurements

ELM-resolved full sets of pedestal profiles for detailed stability analysis
Detailed cross-validation of all the dynamic parameters
$p_{\text {ped }}: T S(2012)$, profile reflectometry(2013), r-ECE(2010), Li-BES (2013), t-CES(2010)
$j_{\|}+E_{r}+V_{p, t}$: MSE(2015), Li-Zeeman(2015), p-CES (2015), ECEI (2010)

- ELM physics/control in ITER relevant condition

Extension of ELM control technique to ITER based on physics understanding Validation of long-pulse RMP suppression in ITER Similar Shape Detailed measurements of profile \& fluctuation change during ELM control Searching for small/no ELM regimes (drsep, I-mode, QH-mode, ...)

- Transport in pedestal region

ELM dynamics and identification of background turbulence in the pedestal region Validated local measurements of $k \|, k_{\perp} \& v_{\perp}$: DBS, MIR and D-BES
Identification of background transport (Micro-tearing, Flow-shear ITG, k-Ballooning, ...) Relation between fluctuations and transport : radial particle \& thermal pinches

- L-H transition Physics

Mechanism for L-H \& H-L transition
Effect on L-H transition by SMBI \& RMP : minimizing power threshold in ITER I-phase during H-L back transition : slow back-transition

KSTAR Doppler Reflectometry (2014)

- V-band X-mode Doppler Back-Scattering (DBS) System

$>$ Heterodyne system using a single side band modulator (SSBM)
$>$ Frequency regime in the plasma edge : V-band ($50-75 \mathrm{GHz}$)
$>$ Antenna tilt angle $\Theta_{0}: 10^{\circ}-12^{\circ}$
$>\max . \mathrm{k}_{\perp}=5.5-6.5 \mathrm{~cm}^{-1} @ 75 \mathrm{GHz}$
$>\mathrm{f}_{\mathrm{D}} \sim \mathbf{1 . 7} \mathbf{- 2 . 6} \mathrm{MHz} @ \mathrm{u}_{\perp} \sim 20-30 \mathrm{~km} / \mathrm{s}$ (H-mode)

$$
\begin{array}{ll}
> & k_{\perp} \approx 2 k_{\mathbf{0}} \sin \Theta_{0} \\
> & \omega_{\mathrm{D}} \approx u_{\perp} k_{\perp} \\
> & u_{\perp}=v_{E \times B+}+v_{\mathbf{p h}} \\
> & E_{\mathbf{r}} \approx-v_{E \times B} B
\end{array}
$$

Microwave part

Lithium-beam Zeeman polarimetry (2015)

- KSTAR Li-beam system was successfully commissioned in 2013.

Parameter	
Diameter	2 cm (FWHM / fully focused in the plasma), 10 cm (defocused)
Current	$2-4 \mathrm{~mA}$
Energy	60 keV
Pulse Length	20 s
Species	Lithium (possible upgrade to Sodium)

- The Li-Zeeman emission is at its maximum around the pedestal region ($R=2.22-2.25 \mathrm{~m}$).
*Lines of sight in 2013 are horizontal at the midplane.

Doppler-shifted Li peak (normalized by unshifed CII@667.843)

- The Zeeman split greater than the instrumental broadening was observed with $\mathrm{Bt}>2.8 \mathrm{~T}$. Li-beam emission.

- For the Zeeman polarimetry to measure the edge $J(r)$, vertical views are more preferred.

32

[^1]
[^0]: \square

[^1]: National Fusion Research Institute

