PT_SOLVER vs TGYRO Comparison (TGLF)

S. Kaye

X. Yuan

Motivation: Initial comparisons I did showed poor agreement between TGYRO and PT_SOLVER wrt underlying modes and their growth rates and real frequencies

- Difficulty getting TGYRO to converge for predicting temps.
- X. Yuan carefully reran TGYRO cases using his namelist settings
- Based on NSTX L-mode (where ITG/TEM modes could be impt)
- Point of comparison was not to try to match exptl temps (which neither did by a long shot!)

Carefully run cases showed good agreement between PT_SOLVER and TGYRO (both using TGLF as a basis)

Growth Rate

For this verification, keep it simple - only temps predicted -

Good agreement in temperature predictions Experimental values (in core) around 50% higher than predictions

Good agreement between PT_SOLVER and TGYRO predictions using TGLF (Limited verification successful!)

- Slight difference of standalone PT_SOLVER and PT_SOLVER inside TRANSP
 - Different equilibrium treatments (Miller vs numerical)
 - Time dependent (TRANSP) vs time independent (stand-alone PT_SOLVER
 - TGLF predictions in poor agreement with NSTX L-mode data (but that is not the point of this exercise)

Level of agreement can depend strongly on input settings

- Quasi-neutrality setting
 - PT_SOLVER assumes quasi-neutrality
 - Agreement with TGYRO not an issue if small number of thermal/impurity species (i.e., NSTX case)
 - An issue for ITER with large number of species: Find agreement only if quasi-neutrality is relaxed in TGYRO
 - PT_SOLVER more accurate predictor?
- Will also be investigating other parameters
- Recommendation (strong): justify use of reduced model (through comparison with gyrokinetics) prior to using for temperature prediction