Background Experiment

R_X -Dependent Toroidal Rotation in the Edge of TCV

T. Stoltzfus-Dueck Princeton University

A. Karpushov O. Sauter École Polytechnique Fédérale de Lausanne

> PPPL April 21, 2014

Outline

Background:

- Experimentally observed features of edge intrinsic rotation
 - "Edge" means pedestal-top out through SOL
- Theory: rotation due to drift orbits and turbulent diffusion
 - ▶ resulting formula for the edge rotation depends on R_X
- A series of Ohmic L-mode shots on TCV, scanning R_X , showed:
 - Linear dependence of "pedestal-top" v_{ϕ} on R_X (\checkmark)
 - Rotation sign change for adequately outboard X-point (\checkmark)
 - Reasonable agreement between predicted and measured v_{ϕ}
 - USN edge rotation was about 5 km/s more counter than LSN

Please ask questions!

H-mode plasmas rotate without external torque, pedestal-top velocity appears proportional to temperature.

- Co-current, especially in the edge.
- $v_{\phi}/v_{
 m ti} \sim O(10^{
 m ths})$ at the pedestal top.
- ► Edge rotation proportional to T or ∇T? Stoltzfus-Dueck, Karpushov, Sauter Rx-Dep

deGrassie et al NF 2009, Fig. 7

- ▶ Spin-up at *L*−*H* transition.
- Roughly proportional to W/I_p .

A simple kinetic transport theory predicts edge intrinsic rotation.

$$\partial_t f_i + v_{\parallel} \partial_{\theta} f_i - \delta v_{\parallel}^2 \partial_r f_i - \partial_r [D(r, \theta) \partial_r f_i] = 0$$

Extremely simple kinetic transport model contains only:

- Free flow along the magnetic field
- Radially-directed curvature drift
- Radial diffusion due to turbulence
 - Diffusivity stronger outboard, decays in r
- Two-region geometry
 - Confined edge: periodic in θ
 - SOL: pure outflow to divertor legs

After some variable transforms, obtain steady-state equation $\partial_{\bar{\theta}} f_i = D_{\text{eff}} \left(v_{\parallel} \right) \partial_{\bar{r}} \left(e^{-\bar{r}} \partial_{\bar{r}} f_i \right),$

in which D_{eff} depends on the sign of v_{\parallel} .

Background Experimental Experiment Theoretical

Theory: Orbit-averaged diffusivity is different for co- and counter-current ions.

Theory: Orbit-averaged diffusivity is different for co- and counter-current ions.

Theory: Orbit-averaged diffusivity is different for co- and counter-current ions.

Stoltzfus-Dueck, Karpushov, Sauter R_X -Dependent Edge Toroidal Rotation on TCV (7)

Vanishing momentum transport sets pedestal-top intrinsic rotation.

$$0 = \int_{-\infty}^{\infty} \left(v_{\text{int}} + v_{\parallel} \right) \Gamma \left(v_{\parallel} \right) dv_{\parallel} = v_{\text{int}} \Gamma^{p} + \Pi$$

$$v_{\text{int}}^{\text{dim}} = -\frac{\Pi}{\Gamma^{p}} v_{\text{ti}}|_{\text{pt}} \approx 1.04 \left(\frac{1}{2}d_{c} - \cos\theta_{0}\right) \frac{q\rho_{i}|_{\text{pt}}}{L_{\phi}} v_{\text{ti}}|_{\text{pt}} \propto \frac{T_{i}|_{\text{pt}}}{B_{\theta}L_{\phi}}$$

- $\blacktriangleright D = D_0(1 + d_c \cos \theta)$
- ► $1/B_{\theta} \Rightarrow 1/I_{p}$
- X-point angle dependence
- Co-current for realistic parameters
- Rotation magnitude $O(v_{ti}/10)$
- L-H spin-up due to $\uparrow T_i|_{pt}$, $\Downarrow L_{\phi}$

Stoltzfus-Dueck, Karpushov, Sauter

 R_X -Dependent Edge Toroidal Rotation on TCV (8)

Background Description Experiment Results

TCV is well-suited to investigate R_X -dependent edge rotation.

Figures from A. Bortolon

Stoltzfus-Dueck, Karpushov, Sauter

- Extreme geometric flexibility
- $n_{e,avg}$ and I_p are feedback-controlled
- CXRS from carbon impurity
- DNBI torque negligible (${\sim}1\% au_{
 m int}$)
- LFS & HFS toroidal viewing chords

 R_X -Dependent Edge Toroidal Rotation on TCV (9)

Background De Experiment Re

Description Results

Theory-Expt Comparison: X-point scan of Ohmic L-modes.

$v_{\text{int}} \approx .104 \left(0.5 d_c - \cos \theta_0\right) \frac{q}{L_{\phi}(\text{cm})} \frac{T_i|_{\text{pt}}(\text{eV})}{B_T(\text{T})} \text{km/s} \Leftrightarrow v_{\text{exp}} = \frac{1}{2} \left[v_{90,\text{LFS}} + v_{90,\text{HFS}} \right]$

- Radial turb decay: $L_{\phi} \approx 1.0 L_{Te}$
- In-out turb asymmetry: $d_c \approx 0.79$
- ► $\cos \theta_0 \doteq [2R_X (R_{out} + R_{in})]/(R_{out} R_{in})$ ► both LSN & USN scanned

Stoltzfus-Dueck, Karpushov, Sauter R_X -Dependent Edge Toroidal Rotation on TCV (10)

• $T_i|_{pt} = T_i(\rho = 0.9)$

• $v_{90} = v(\rho = 0.9)$ (km/s)

Example discharge with X-point position sweep

- All shots Ohmic L-modes
- Included static and swept R_X
- Data taken in both swept & stationary phases
- pulsed DNBI (20ms on/40 off)

Background Description Experiment Results

Profiles with LFS and HFS X-points are similar, but shifted.

Comparison of raw and fitted velocity profile data for shots 48158 ($R_X \approx 71$ cm, green) and 48407 ($R_X \approx 108.3$ cm)

Theory-Experiment agreement is surprisingly good.

Roughly linear dep of v_{90} on R_X .

• Sign change for large R_X .

Simple formula for v_{int} matches v_{90} well.

• Reasonable fitting parameters: $d_c \approx 0.79, \ L_{\phi}/L_{Te} \approx 1.0$

LSN \sim 5km/s more co-current than USN.

Recall:

$$\begin{aligned} v_{\text{int}} &\doteq .104 \left(d_c / 2 - \cos \theta_0 \right) \frac{q}{L_{\phi}(\text{cm})} \frac{T_i|_{\text{pt}}(\text{eV})}{B_T(\text{T})} \text{km/s} \\ v_{90} &: \text{LFS/HFS-averaged cubic spline fit} \\ \cos \theta_0 &\doteq \left[2R_X - (R_{\text{out}} + R_{\text{in}}) \right] / (R_{\text{out}} - R_{\text{in}}) \end{aligned}$$

 $R_{\mathbf{X}}$ -Dependent Edge Toroidal Rotation on TCV (13)

The basic trend holds for alternate edge velocities.

LFS/HFS-avgd v vs v_{int} for:

Cubic spline-fitted profiles: UL: $v_{85} = v(\rho = 0.85)$ UR: $v_{95} = v(\rho = 0.95)$

Linearly-fitted profiles, $v_0 + 0.9v'$, using raw data from $0.6 \le \rho \le 0.9$: DL: v_{lin} : points weighted with σ^{-2} DR: $v_{\text{lin},r}$: "robust fit" routine

Background Description Experiment Results

Core rotation reversal has little effect on edge rotation.

Spontaneous core rotation reversal well-known on TCV (Bortolon et al PRL 2006) Accidentally triggered reversal in shots 48152–48153, due to larger I_p

 v_{90} (km/s) versus v_{int} (km/s), core reversal in red. (Only LSN/HFS plotted, since \sim no core rotation reversals in other quadrants.)

Summary

- Simple theory for intrinsic rotation due to interaction of:
 - spatial variation of turbulence
 - passing-ion radial orbit excursions
- Predicted rotation depends strongly on R_X
- Performed series of Ohmic L-modes on TCV, scanning R_X
- Experiment and theory appear fairly consistent
 - v_{ϕ} depends about linearly on R_X .
 - v_{ϕ} goes counter-current for large R_X .
 - Simple v_{int} formula seems to capture most variation of v_{90} .
 - Basic results hold for various choices for experimental v.
 - Edge v_{ϕ} appears insensitive to core rotation reversal.
- ► USN rotation shows modest counter-current shift, compared to LSN.

Comments/Questions?

Some edge parameters are important for intrinsic rotation.

Influence of SOL ==> nonlocal, steep gradients, strong turbulence, very anisotropic

Lengths:
$$\frac{L_{\perp}}{a}, \frac{a}{qR} \ll 1, k_{\parallel} \sim \frac{1}{qR}, \frac{k_{\parallel}}{k_{\perp}} \lesssim k_{\parallel}L_{\perp} \ll 1$$

Rates: $\frac{D_{tur}}{L_{\perp}^{2}} \sim \frac{v_{ti}|_{sep}}{qR} \ll \omega \sim \frac{v_{ti}}{L_{\perp}}$
 $D_{tur} \sim \tilde{v}_{Er}^{2} \tau_{ac} \sim \tilde{v}_{Er}^{2}/k_{\perp}\tilde{v}_{Er} \sim c\tilde{\phi}/B$
 $decreases in r near LCFS, on scale $L_{\phi} \sim L_{\perp}$
 $\Delta v_{\parallel}|_{turb} : \left(\frac{\Delta v_{\parallel}|_{turb}}{v_{ti}|_{pt}}\right)^{2} \sim \frac{k_{\parallel}}{k_{\perp}} \left(\frac{T_{e}}{T_{i}|_{pt}} \frac{e\tilde{\phi}}{T_{e}} \frac{1}{k_{\perp}\rho_{i}|_{sep}}\right) \ll 1$
Wide passing-ion orbits: $\delta \doteq \frac{q\rho_{i}|_{pt}}{L_{\phi}} \sim O(1)$$

LaBombard et al NF 2005, Fig. 8.

Absolute Fluctuation Levels

Profiles show interaction of transport with orbit shifts.

Can transport-driven SOL flows drive rotation in the confined plasma?

Although transport-driven toroidally-asymmetric flows exist in the theoretical calculation, they do not drive rotation at the boundary with the core plasma.

Favorable/unfavorable ∇B comparison can clarify physics.

Reverses transport-driven flows but not orbit-driven flows.

Stoltzfus-Dueck, Karpushov, Sauter

 $R_{\mathbf{X}}$ -Dependent Edge Toroidal Rotation on TCV (20)

Some LSN/USN difference may be a simple edge layer.

Even unfiltered results clearly show rotation reversal.

Almost all CXRS measurements plotted, but omitted:

- Some limited periods
- The single reversed- B_T shot (49759)

Data filtering isolates the physics of interest.

Filtered out:

- Reversed B_T (only one shot)
- Active MHD modes
 - Counter-current shift & scatter
- Small wall gaps (<7mm)
 - Change boundary condition
- Large self-reported CXRS error:

► Raw:
$$v_{err}^L \doteq N_p^{-1} \sum_{0.6 \le \rho \le 0.9}^{LFS} \sigma_{CXRS}^{raw}$$
,
 $v_{err}^N \doteq v_{err}^L / \overline{v_{err}^L} + v_{err}^H / \overline{v_{err}^H} > 3.1$
► Fit:
 $v_{err}^{f,L} \doteq N_p^{-1} \sum_{0.875 \le \rho \le 0.925}^{LFS} \sigma_{CXRS}^{fit}$,
 $v_{err}^f \doteq (v_{err}^{f,L} + v_{err}^{f,H})/2 > 9.9 \text{km/s}$

 $\sigma_{filt}\approx 4.39 km/s, ~\sigma_{unfilt}\approx 6.30 km/s$

Smoothing over 2–3 CXRS times reduces noise.

 v_{90} (km/s) versus v_{int} (km/s),smoothed over 1,2,3 (Top, L to R), or 4,5,6 (Bottom, L to R) CXRS times. 2 or 3 CXRS times may be optimal?

Stoltzfus-Dueck, Karpushov, Sauter R_X-Dependent Edge Toroidal Rotation on TCV (24)

leading to a deceptively simple transport model,

$$\partial_t f_i + v_{\parallel} \partial_{\theta} f_i - \delta v_{\parallel}^2 (\sin \theta) \partial_r f_i - D(\theta) \partial_r (e^{-r} \partial_r f_i) = 0$$

 $\text{Gyrokinetic equation} \Rightarrow \text{average over turbulence} \Rightarrow \frac{\rho_i}{L_\perp}, \frac{L_\perp}{a}, \frac{1}{q}, \frac{a}{R_0}, \frac{v_{\textit{E}}}{v_{\text{ti}}B_\theta/B_0} \ll 1$

- ► Turbulent *D*⇒purely diffusive turbulence, "null hypothesis"
 - arbitrary θ dependence, except $D(\theta) > 0$
 - exponentially decreasing radially
 - not necessarily order-unity
- ▶ No || acceleration of ions: allows v_{\parallel} -by- v_{\parallel} solve
 - Collisionless: good for superthermal ions
 - ▶ No $\mu \nabla B$ force: passing-ion approximation
- Axisymmetric, radially-thin simple-circular geometry
- $\mathbf{E} \times \mathbf{B}$ flows below poloidal sound speed: $cE_r/B_{\theta}v_{ti} \ll 1$

Normalizations: $v_{\parallel}:v_{ti}|_{pt}$, $r:L_{\phi}$, $t:aB_0/B_{\theta}v_{ti}|_{pt}$, $f_i:n_i|_{pt}/v_{ti}|_{pt}$, $D:L_{\phi}^2B_{\theta}v_{ti}|_{pt}/aB_0$

which captures the radially-global nature of the problem.

$$\partial_t f_i + v_{\parallel} \partial_{\theta} f_i - \delta v_{\parallel}^2 (\sin \theta) \partial_r f_i - D(\theta) \partial_r (e^{-r} \partial_r f_i) = 0$$

$$\Rightarrow \text{ Solve for } f_i \sim F_0$$

$$\Rightarrow \text{ necessary since } v_{\parallel}/qR \sim D_{\text{tur}}/L_{\perp}^2$$

$$\Rightarrow \text{ resulting } f_i \text{ not symmetric in } v_{\parallel} \text{ or } \theta$$

$$\Rightarrow \text{ Pedestal-SOL formulation in boundary conditions}$$

$$\Rightarrow \text{ Radial variation of turbulent diffusivity}$$

$$\Rightarrow \delta \doteq q \rho_i|_{\text{pt}}/L_{\phi} \text{ a free parameter (may ≈ 1 in experiment)}$$

- Invariant to rigid toroidal rotation v_{rig}
- ► Trivial conservation of a simplified toroidal momentum: $p_{\phi} \doteq \int dv_{\parallel} \left(v_{\parallel} + v_{\rm rig} \right) f_i$

The mechanism is robust, but other terms likely matter too.

Recall the simplifying assumptions including:

- ▶ neglect of the **E** × **B** drift and its divergence,
- simple circular geometry,
- simplified, "deeply-passing" particle orbits,
- collisionless,
- purely-diffusive transport.

Relaxing these assumptions may:

- modify the given mechanism,
- contribute additional rotation drive terms.

Why should D_{tur} be proportional to $\tilde{\phi}$, instead of fitted χ_i ?

Momentum flux from core dominated by higher- V_{\parallel} ions:

- enter SOL mostly due to drift-orbit excursions
- relatively uncorrelated with blobs and other fluctuations

SOL profile gradients dominated by lower- V_{\parallel} ions:

- enter SOL mostly due to transport
- highly correlated with blobs and other fluctuations