

Mitigation of Alfvénic activity by 3D magnetic perturbations on NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL **Johns Hopkins U** LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL **Princeton U Purdue U** SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD U Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee U Tulsa **U** Washington **U** Wisconsin X Science LLC

A. Bortolon (UTK)

W.W. Heidbrink (UCI), G.J. Kramer, J.-K. Park, E.D.Fredrickson, M. Podestà (PPPL), N.M Ferraro (GA), J.D. Lore, D.A. Spong (ORNL) and the NSTX Team

41st EPS conference Berlin, Germany, June 23-27, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Mitigation of fast ion instabilities

- Good confinement of fast ions is a key aspect of a fusion device
 - Optimize the plasma heating and current drive
 - Avoid damage from localized particle losses to wall
- Fast ions driven instabilities can compromise their confinement
 - multiple frequency bands (from low to ion cyclotron frequencies)
 - bursting, frequency-chirping are common
 - coupled avalanches of multiple bursting modes are observed^{*}
 - bursts can cause substantial transport and losses of fast ions
- Can we actively control or mitigate the impact of fast ion modes?
 - Reduce drive of instability (fast ion distribution function)
 - Enhance damping mechanism (plasma parameters, geometry)
 - Destroy coherent structures in phase space (chirping modes)

*Fredrickson, Nucl. Fusion 52 (2012) 043001

Examples of mitigation of fast-ion driven instabilities

 On NSTX, HHFW heating observed to stabilize continuous TAE modes

Heidbrink, PPCF 48 (2006) 1347

 On DIII-D, RSAE activity is suppressed with EC deposition near the shear reversal radius

VanZeeland, Nucl.Fusion 49 (2009) 065003

Mitigation of AE by applied 3D fields observed on NSTX

- 1. High frequency Global Alfvén Eigenmodes (GAE)
 - Observation of altered bursting dynamic
 - Simulation of MP induced fast ion transport
 - Effect on *fast ion drive*
- 2. Low frequency Toroidal Alfvén Eigenmodes (TAE)
 - Observation of amplitude reduction
 - Analysis of continuum in 3D perturbed equilibrium
 - Effect on *mode damping*

NSTX suited to study effect of 3D fields on Alfvén modes

•	Low B _{tor.}	high	density \rightarrow	"low"	Alfvén s	beed
---	-----------------------	------	-----------------------	-------	----------	------

- large population of super alfvénic beam ions
- favors the drive of Alfvén Eigenmodes (AE)
- 6 Magnetic perturbation (MP) coils
 - n=1, n=3 perturbation
 - Effective in ELM triggering, plasma braking, RWM ____ feedback, error field compensation

NSTX parameters			Fast lons from NBI		Resistive Wall Mode coils		
Major radius	0.85 m		3 sources, total P _{NBI} ≤ 6 MW		Coils	6 (external)	
Aspect ratio	~1.3		E _{injection} ≤ 90 keV		Coil current	6 kA · turn	
Plasma current	~1 MA		1 <v<sub>beam/V_{Alfven} < 5</v<sub>		δB in vessel	<50 mT	
Toroidal field	<0.6 T		Larmor radius <20 cm		Rot. Freq.	<50 Hz	

1	0	0	Ν	S	ГХ	(-	
	V	V		Ŭ			

Application of 3D fields leads reduction of neutron rate

- ELM free H-mode
- Pulsed, n=3, static fields
 - Pulse duration 3 ms
 - Pulse frequency (40Hz)
 - I_{coil} < threshold for ELM trigger
- Sawtooth-like modulation of neutron rate observed
 - Relative drop of 7%
- Persistent bursting/chirping MHD
 - Repetition rate 4kHz
 - Frequency chirp 100 kHz
 - Toroidal periodicity n=7-9
- Identified as Global AE (GAE)

GAEs have radially broad eigenfunction

- GAE often observed in
 0.4-1.2 kHz (0.2-0.6 f_{ci})
- Driven by velocity-space gradients at Doppler-shifted cyclotron resonances
- Identification based on time evolution of frequency as the safety factor evolves
- Mode structure measured by reflectometry in H-modes
 - GAE tend to peak toward the axis
 - Finite amplitude at boundary

Crocker et al. Nucl. Fusion 53 (2013) 043017

Magnetic perturbation (MP) mitigates bursting GAE

Mitigation of Alfvén Instabilities by 3D Fields

A. Bortolon

- When n=3 pulse is applied:
 - Burst amplitude reduced (x 1/2)
 - Burst frequency increased $(4 \rightarrow 12 \text{kHz})$
 - Range of freq. sweep reduced $(100\rightarrow 40 \text{kHz})$
- Bursting is reduced prior than neutron rate decay
 - Timescale $\leq 1 \text{ ms}$ (drift orbit)
- Slower recovery after end of MP

Berlin, EPS 2014

Timescale ~1-3 ms (collisional)

Summary of observations

- A series of ~20 discharges collected during this experimental program
 - Pulse duration 2-6 ms, pulse frequency 20-40Hz
- Response of hf-AE to MP fields is consistently observed
 - Effectiveness can vary, mode suppression is not observed
- Concurrent strong low frequency MHD masks or weakens the mitigation
- MP pulses with coil current <1 kA have little or no effect
 - Neutron drops and timescales suggest direct role for fast ions
 - Hypothesis:
 - 1. MP causes rapid transport and/or loss of resonant fast ions, affecting the drive for instability
 - 2. After MP is removed strong bursting resumes as the distribution function is restored

MPs are amplified by plasma response

Magnetic sensors measure MP amplitude near the wall

[1] Park et al, Phys.Plasma 14 (2007) 052110
[2] Ferraro et al Nucl. Fusion 53 (2013) 073042

Modeling required for MP structure in the plasma volume

- Structure of vacuum fields from Ampere's law
- 1-fluid, linear simulations used to predict plasma response:
 - Ideal plasma response IPEC [1]
 - Resistive plasma response M3D-C1 [2]
- Substantial field amplification compared to vacuum fields is predicted in the plasma

MPs develop a complex spatial structure

Plasma response fields structure of scale of beam ion Larmor radius

Full-orbit simulations predict dynamic evolution of fast ion distribution function in presence of MP

SPIRAL [1] computes the orbit of test particles with collisions and pitch angle scattering

- Slowing down d.f. from a 25 ms run with equilibrium fields
 - Constant fueling rate
 - Birth location and velocity from attenuation code
- Simulation continued for 10 ms, including different MP models
 - vacuum fields
 - ideal response (IPEC), resistive response(M3D-C¹)
- MP amplitude scaled to match measurements of in-vessel sensor

Evolution of neutron rate predicted with resistive plasma response in good agreement with experiment

MP affects the number of resonant fast ions

- Fast ion d.f. $F(E,v_{||}/v)$
 - integrated over ρ_{pol} < 0.6 (GAE location)
 - 2<t<4 ms after MP starts
- Depletion for:
 - $0.0 < v_{||}/v < 0.6$ (trapped)
 - 0.8< v₁₁/v < 0.6, E>70 keV
- Increment for:
 - v₁₁/v > 0.6, E>70 keV (passing)

Dispersion relation

Resonance

condition

 $egin{aligned} & \omega &= k_\parallel \, v_A \ & \downarrow \ & \omega &= k_\parallel \, v_{i,\parallel} + l \, \Omega_{ci} \end{aligned}$

Doppler-shifted cyclotron resonances on the flank of the distribution function

Simulations suggest reduction of mode drive

- Instability depends on gradient of d.f. in velocity space
- Gradient $\partial F/\partial v_{\perp}$ along the resonance is main driving term
- Reduction of $\partial F/\partial v_{\perp}$ by 10-20% suggest smaller drive with MP
- Can affect bursting dynamics of marginal instable modes
- Non-linear behavior requires self-consistent treatment of d.f.

Mitigation of AE by applied 3D fields observed on NSTX

- 1. High frequency Global Alfvén Eigenmodes (GAE)
 - Observation of altered bursting dynamic
 - Simulation of MP induced fast ion transport
 - Effect on *fast ion drive*
- 2. Low frequency Toroidal Alfvén Eigenmodes (TAE)
 - Observation of amplitude reduction
 - Analysis of continuum in 3D perturbed equilibrium
 - Effect on *mode damping*

Low frequency AEs modulated in ELM pacing experiments

- MP used to trigger ELMs
- Static fields , n=3, pulsed
 - Pulse duration 4 ms
 - Pulse frequency 60 Hz
 - I_{coil} = 2.9 kA
- Weak effect on neutron rate
- Modulation of modes in TAE frequency range
 - Freq. = 60-100 kHz
 - Toroidal number n=2-4
 - Propagation co-NBI

Low frequency AE are modulated by MP pulses

- Two dominant observed
 - n=2, 65 kHz
 - n=3, 75 kHz
- Radial displacement at plasma edge from reflectometer:
 - -ξ_r ≈ 0.14 mm (n=2)
 - ξ_r ≈ 0.04 mm (n=3)
 - ELMs crash 2 ms after MP begin
 - Modes amplitude response:
 - Suppressed after ELM
 - Decreased *before* ELM
- Neutron rate drop < 2%

MHD computations find TAEs consistent with observations

- Ideal MHD simulations (NOVA-K)
 - t=490 ms (before MP)
 - Realistic fast ion d.f.
 - Includes toroidal rotation
- Alfvén continua distorted by rotation
- Unstable modes in TAE gap
 - n=2, f=55-60 kHz
 - n=3, f=65-70 kHz
- Weak coupling with lower continuum at mid-radius
- Modes extend to the plasma edge
 - overlap with MP (ρ_{pol} >0.8)

Can 3D perturbations alter TAE damping rates?

- Ion/electron temperature, density → Landau damping (ion/electron)
- Rotation , safety factor profile → Continuum structure (gaps)
- Substantial change of background profiles required
 - not observed before ELM crash
- MP break axisymmetry → toroidal coupling (as in stellarators) [1]
 - Families of toroidally coupled modes $n_1 n \pm n_{MP}$, $n \pm 2 n_{MP}$, ...
 - AE stability can be significantly altered (e.g. continuum structure)
- Problem addressed with computational tools from stellarator research:
 - VMEC computes ideal MHD equilibrium for 3D configurations [2]
 - STELLGAP computes Alfvén continuum for 3D magnetic equilibria [1]

[1] Spong et al, Phys.Plasma 8 (2003) 3217 [2] Hirshman & Whitson, Phys.Fluids 26, (1983) 3553

Without MP, Alfvén continua are toroidally uncoupled

- VMEC equilibrium (**no MP**)
- STELLGAP continuum for n=2
 - Rotation not included
- TAE and EAE gaps identified

Extend from axis to edge

Including MP, toroidal coupling reduces continuum gaps

Modifications of continuum due to couplings in the 3D metric tensor

VMEC equilibrium (with MP)

STELLGAP continuum for n=2

including sidebands n=5, 8

- Toroidally coupled continuum modes in edge region
 - EAE gap is closed
 - TAE gap shrinks
- Could enhance damping of TAE by interaction with continuum

Optimize the MP to get 3D perturbed equilibria stable against AE

Conclusions

- NSTX observations show that externally imposed 3D fields can alter the dynamic evolution of fast-particle driven instabilities (GAE, TAE)
- Modeling of MP induced fast-ion transport supports controlling fast-ion instabilities by tailoring the distribution function with appropriate MP
- Computations of Alfvén stability in perturbed equilibria suggest MP induced toroidal coupling as a way to control AE
- Dedicated experiments would be desirable to test and optimize the MP effect in controlled fashion
- NSTX-Upgrade physics operations will begin in spring 2015
 - New tangential, off axis NBI \rightarrow tailor fast ion distribution function
 - In-vessel antenna \rightarrow excite AE and measure damping rates