Pedestal Structure and Stability in High-Performance Regimes on Alcator C-Mod

John Walk

MIT Plasma Science and Fusion Center

PPPL Seminar - 4 August 2014

- MIT PSFC: JW Hughes, DG Whyte, AE White, JP Freidberg, AE Hubbard, JL Terry, SG Baek, JE Rice, R Granetz, S Shiraiwa, S Wolfe, S Wukitch, M Chilenski, IC Faust
- GA: PB Snyder, T Osborne
- PPPL: A Dominguez, RM Churchill
- UCSD CMTFO: I Cziegler

Improved understanding of ELMy H-mode limits¹

C-Mod contributions to predictive, physics-based model for ELMy H-mode pedestal

Characterize Pedestal structure, stability in I-mode^{2,3}

- \blacksquare pedestal response to fueling, heating power \rightarrow path to high-performance operation
- improved understanding of edge stability, ELM avoidance
- pedestal impact on global performance & confinement in I-mode competitive regime to conventional H-modes

¹JR Walk et al., Nuclear Fusion **52** (2012)

²JR Walk et al., Physics of Plasmas **21** (2014)

³Invited talk, APS-DPP Nov. 2013

desirable for a reactor:

- high energy confinement
- Iow particle confinement (low enough, at least)
- avoid, mitigate, or suppress large (type-I) ELMs

the solutions?

- engineering approaches pellet pacing, RMP
- physics solutions pedestal regulation below ELM limit by fluctuations

I-mode: a novel high-confinement regime on C-Mod

- novel high-confinement regime pioneered on Alcator C-Mod, occupying intermediate parameter space between L-mode and H-mode access, regulated by Weakly-Coherent Mode (WCM) fluctuation
- notably, decouples energy and particle transport forms
 H-mode-like temperature pedestal without accompanying density pedestal
- highly desirable features for tokamak reactor operation

Need to understand pedestal structure, stability against ELMs in I-mode to extrapolate to larger devices

Context & Motivation

Pedestal Modeling & Theory

- peeling-ballooning MHD stability
- kinetic-ballooning mode turbulence
- ELMy H-Mode Physics
- I-Mode Pedestals
- I-Mode Pedestal Stability
- I-mode Global Performance & Confinement
- Summary, Future Work, & Questions

Coupled peeling-ballooning MHD modes calculated by ELITE code⁴

"Ballooning" boundary: unstable modes at moderate n

 efficiently calculates moderate-n P-B MHD instability, growth rate

■ calculate range of n to find most unstable mode on grid of pedestal pressure gradient and current → stability contour

⁴HR Wilson et al., Physics of Plasmas 9 (2002)

JR Walk (MIT PSFC)

Kinetic-ballooning mode (KBM) turbulence limits pressure gradient in pedestal

- above critical gradient ballooning-like electromagnetic turbulence drives rapidly saturating transport – limits pedestal gradient to α_c
- accounting for magnetic shear, KBM limit takes the form $\Delta_{\psi} \sim \beta_{p,ped}^{1/2}$ for pedestal width (in poloidal flux space)
- onset threshold correlated with infinite-n ideal ballooning MHD mode – easily calculated (BALOO code) nearly as accurately as more involved gyrokinetic+gyrofluid turbulence treatments

- Goal: predict pedestal width, height based on engineering target parameters, rather than reconstructed equilibria after-the-fact
 - take inputs: *R*, *a*, κ , δ , *I_p*, *B_T*, $\langle \beta_N \rangle$, *n_{e,ped}* → construct analytic model equilibria
 - ELITE calculation for peeling-ballooning MHD constraint
 - width constraint from KBM, either by fitted analytic form (EPED1) or direct calculation of ballooning threshold (EPED1.6)

⁵PB Snyder et al., Nuclear Fusion **51** (2011)

Predictive Model for ELMy H-modes – EPED⁵

⁵PB Snyder et al., Nuclear Fusion **51** (2011)

JR Walk (MIT PSFC)

- Context & Motivation
- Pedestal Modeling & Theory
- ELMy H-Mode Physics
 - H-mode pedestal observations
 - EPED modeling on C-Mod
- I-Mode Pedestals
- I-Mode Pedestal Stability
- I-mode Global Performance & Confinement
- Summary, Future Work, & Questions

Target steady ELMy phases for study

ELM cycle binning necessary to capture pedestal limit

Take profile data immediately preceding ELM crash (typically last 20% of ELM cycle) for pedestal structure at point of instability – necessary, but difficult given ELM frequency on C-Mod (subset of data prepared thus).

Pedestal width consistent with KBM limit

Pedestal width consistent with KBM limit

Pedestal width consistent with KBM limit

Minimal dependence of width on other parameters

Nominally, scale factor is a weakly-varying function $G(\nu^*, \varepsilon, ...)$

no variation with collisionality, gyroradius, shaping, safety factor/magnetic shear not captured by $\beta_{p,ped}^{1/2}$ scaling

Pedestal height predicted by ballooning ∇p limit

Pedestal height p_{ped} ~ \(\nabla p \times \Delta_p \rightarrow \Lambda_p \Delta_p \Delta_p \Delta_p\) from ballooning MHD
 predicted well by \(\Delta_p \circ \sqrt{\beta_{p,ped}} \circ \sqrt{n_e \T_e} / I_p\) from KBM limit

spot-check: predicted less well by $\Delta_p \sim \rho_{i,pol} \sim \sqrt{T_e}/I_p$, as predicted by alternate models for pedestal width

JR Walk (MIT PSFC)

Robust width, gradient limit = attainable $\beta_{p,ped}$ limited in ELMy H-mode

C-Mod H-modes on common physics footing with other machines

Computational modeling of P-B MHD, KBM captures ELMy pedestal

EPED predicts pedestal height for ELM-binned pedestals

measured to predicted ratio of 0.835 ± 0.036 for ensemble-averaged data, 0.934 ± 0.066 for ELM-synced pedestals, well within expected $\pm20\%$ accuracy for EPED predictions

Width varies over narrow range, hard to predict

Pedestal width varies little over range of 3-5% of poloidal flux, difficult to extract trend – EPED reproduces robust width to within $\pm20\%$ uncertainty

Experiments expand parameter space tested in EPED⁶

- reach highest field (8 T), highest thermal pressure, within factor of ~ 2 of ITER pedestal target
- C-Mod contribution to multi-machine Joint Research Target, motivates development of EPED to higher collisionality, density
- reliable physics-based understanding of H-mode pedestal limits

⁶RJ Groebner et al., Nuclear Fusion 53 (2013)

- Context & Motivation
- Pedestal Modeling & Theory
- ELMy H-Mode Physics
- I-Mode Pedestals
 - pedestal response to fueling, heating power
 - pedestal widths & gradients
- I-Mode Pedestal Stability
- I-mode Global Performance & Confinement
- Summary, Future Work, & Questions

I-mode develops H-mode temperature profile, L-mode density

Robust I-mode access on C-Mod

I-mode accessed over range of edge current profiles, low-mid collisionalities

- "Unfavorable" ∇B orientation (ion ∇B drift away from primary X-point) forward-field upper-null or reversed-field lower-null operation
- \blacksquare Sustain mode with heating power up to $\sim 2\times$ above L-I threshold

Temperature pedestal H-mode-like, set by plasma current, heating power

- pedestal T_e shows positive trending $T_e \sim I_p$, spread at given current due to heating power
- input power strongly affects pedestal temperature as with EDA H-mode more properly, power per particle sets pedestal temperature at fixed current

Pedestal density separately controlled from temperature, independent of MHD limits

 with sufficient power to maintain P_{net}/n_e, temperature pedestal matched across range of fueling

• Contrasts to MHD-limited pedestals (fixed $\beta_{p,ped} \rightarrow$ limit on $n_e T_e$) – path to strongly increase pedestal beta

I-mode pedestal pressure scales with current, heating power, fueling, competitive to H-mode

- Pedestal pressure increases at least as $p_{ped} \sim I_p$, due to increased $T_e \sim I_p$ and more fueling (fixed f_{Gr}) at higher current
- Pedestal pressure at fixed current $\sim P_{net}$ (consistent with $T_e \sim P/n_e$), corresponds to favorable scaling of energy confinement with heating power
- Fueling (with sufficient power to maintain temperature pedestal) strongly increases pedestal pressure

JR Walk (MIT PSFC)

- Independent determination of density profile (via fueling), temperature profile (via heating power) – operator control, rather than physics limits, sets pedestal
- path to strongly improved performance in l-mode matched increases in fueling, heating power strongly increase pedestal pressure at same size, current, field
- Good for ITER access as well: sidestep high power threshold by accessing at low density, step up to Q = 10 scenario with matched density, power increase
- L-mode density profile \rightarrow no impurity pinch in edge

Pedestal width uncorrelated with $\beta_{p,ped}$, contrary to KBM limit

■ I-mode pedestal width shows no trend with $\beta_{p,ped}$, consistently broader than predicted by EPED1-like KBM limit $\Delta_{\psi} = 0.076 \beta_{p,ped}^{1/2}$

■ intuitively, pedestal ∇p insufficient to drive ballooning-like instabilities

 $\rho_{i,pol} \rightarrow \text{ion-orbit-loss models for } E_r$ well width

edge collisionality \rightarrow bootstrap current instability drive

edge safety factor \rightarrow magnetic shear, ballooning stabilization

heating power per particle \rightarrow heat flux through temperature pedestal

I-mode pressure pedestal width robust across dataset

- width robust across dataset, ∇p ~ p₉₅
- suggests with increasing pressure, ballooning ∇p boundary could be exceeded → ELMs
- independent density, temperature profile control = approach, but not exceed, limit
- Context & Motivation
- Pedestal Modeling & Theory
- ELMy H-Mode Physics
- I-Mode Pedestals
- I-Mode Pedestal Stability
 - peeling-ballooning MHD, KBM modeling
 - ELM characterization
- I-mode Global Performance & Confinement
- Summary, Future Work, & Questions

Pedestal pressure gradient suggests MHD stability, headroom for performance improvement

- Pedestal ∇p shallower at given Ip than ELMy H-mode due to lack of density pedestal
- Gradients scale more weakly than ∇p ∝ I²_p from ballooning MHD (critical-gradient) stability boundary

I-mode pedestal scalings consistent with stability against peeling-ballooning MHD

- ballooning stability, to lowest order, limits pedestal β_p in ELMy H-mode; l-mode n_e, T_e independent, rather than fixed n_e T_e
- Pedestal β_p scaling with density consistent with constant

 $T_{e,95}/B_p
ightarrow T_e \sim I_p,$ rather than $T_e \sim 1/n_e$

I-mode pedestal scalings consistent with stability against peeling-ballooning MHD

- ballooning stability, to lowest order, limits pedestal β_p in ELMy H-mode; l-mode n_e, T_e independent, rather than fixed n_e T_e
- Pedestal \(\beta_p\) scaling with density consistent with constant

 $T_{e,95}/B_p
ightarrow T_e \sim I_p,$ rather than $T_e \sim 1/n_e$

Stability is self-enforcing for I-mode pedestals

4 35 / 60

I-mode pedestal strongly stable against peeling-ballooning MHD, KBM turbulence

Including in low-field, low-energy cases exhibiting apparent ELMs(?)

I-mode pedestal modeled to be below KBM threshold as well, including cases with ELMs(?)

• KBM-limited (EPED1) prediction for width, $\Delta_{EPED} = 0.076 \beta_{p,ped}^{1/2}$

- BALOO calculates width of pedestal locally beyond threshold
 mode onset when half of pedestal is unstable
- I-mode cases spanning width range modeled below threshold

I-mode pedestal modeled to be below KBM threshold as well, including cases with ELMs(?)

• KBM-limited (EPED1) prediction for width, $\Delta_{EPED} = 0.076 \beta_{p,ped}^{1/2}$

- BALOO calculates width of pedestal locally beyond threshold
 mode onset when half of pedestal is unstable
- I-mode cases spanning width range modeled below threshold

EPED physics assumptions alone are not capturing all observed edge behavior in I-mode

I-mode pedestal is stable against identified ELM triggers – however, in minority of cases (12 time windows / 10 unique shots, out of dataset of 72 time windows / 52 shots), particularly at low field (\sim 4.6 T) exhibit small, intermittent events that appear to be ELMs.

 \rightarrow need to more carefully characterize these events!

ELMs denoted by:

- burst of ionization in edge \rightarrow spike in H_{α} light
- "explosive" crash in pedestal, both temperature and pressure
 unstable fluctuation leading up to ELM (P-B MHD instability, magnetic precursors, turbulent fluctuations...)

observations of ELM candidates in I-mode based on H_{α} spikes, in most cases (~ 70%) tied to the sawtooth heat pulse reaching the edge – good place to begin!

Sawtooth heat pulse modifies temperature pedestal, little impact on density profile

prepare data by masking TS frames to first 25% of sawtooth cycle (immediately following heat pulse reaching edge) – similar to ELM-binning technique used for ELMy H-mode

Sawtooth measurably perturbs pedestal in stability space, but insufficient to reach ELM threshold

I-mode sawtooth H_{α} events (mostly) do not exhibit characteristic temperature crash expected for ELMs

These events do not appear to be ELMs

Given the lack of a temperature pedestal crash and the computed stability against known ELM triggers, these events appear to not be instability-driven ELMs at all – best described simply as "sawtooth-driven H_{α} bursts."

possible explanations:

ionization front impacting neutrals in SOL?

density transport effect from sawtooth interaction with WCM? which raise questions:

- why are these sometimes triggered field, shaping, density effects?
- under comparable conditions, why are H_α spikes inconsistently triggered by similarly-sized sawteeth?

Minority of H_{α} spikes do appear to be ELMs, however

- Few events (10 out of 37 total events) do exhibit observable drop in edge T_e with spike, are not necessarily triggered by sawteeth
- suggests these are "true" ELMs – but perturbation is still small, < 1% stored energy drop, T_e crash on sawtooth-triggered ELMs insufficient to overcome T_e increase from heat pulse

Stationary pedestal structure around intermittent ELMs still stable to P-B MHD, KBM threshold

- *H_α* spikes (putative ELMs) in minority of I-mode cases (12 out of 72 time windows)
- Majority (~ 70%, 27/37) of identified events do not appear to be ELMs at all, consistent with computed stability and observed pedestal behavior – rather, are benign H_α pulses triggered by sawteeth
- a few do exhibit ELM behavior, not necessarily triggered on sawteeth – but these are rare, small
 - stationary pedestal structure still stable transient modifications to hit stability boundary?

- Context & Motivation
- Pedestal Modeling & Theory
- ELMy H-Mode Physics
- I-Mode Pedestals
- I-Mode Pedestal Stability
- I-mode Global Performance & Confinement
 - core profile impact and performance
 - I-mode confinement scalings

Summary, Future Work, & Questions

Pedestal impacts core, global performance

Strong temperature pedestal supports high core temperature, pressure

- stiff (R/L_{T_e} ~ fixed) temperature profiles → higher T_{ped} supports greatly increased core temperatures
- provided moderate density peaking $(n_{e,0}/\langle n_e \rangle \sim 1.1 1.3 \text{ in I-mode})$, reaches comparable core, vol-average pressure despite relaxed p_{ped}
- fusion-reactive plasma where T_e > 4 keV, high T_{ped} maximizes fusing volume

JR Walk (MIT PSFC)

Strong temperature pedestal supports high core temperature, pressure

JR Walk (MIT PSFC)

Energy confinement lacks degradation with heating power

- Stored energy $W \sim P \tau_E$
- for H-mode, expect $\tau_E \sim I_p$, with power degradation $\tau_E \sim P^{-0.7}$ thus $W \sim I_p P^{0.3}$
- I-mode stored energy $W \sim I_p P_{net} \rightarrow \text{little/no}$ degradation of τ_E with heating power
- reflects lack of MHD limit on pedestal

...As well as with fueling

- I-mode stored energy set by pedestal pressure, responding strongly to fueling
- ELMy H-mode stored energy set by pedestal β_p, limited by MHD constraint – mainly increase pedestal β_p with stronger shaping, flat relation with fueling

Following practice in ITER89, ITER98 scalings, express I-mode energy confinement as a power law of the form

$$\tau_{E} = C I_{\rho}^{\alpha_{I_{\rho}}} B_{T}^{\alpha_{B_{T}}} \overline{n}_{e}^{\alpha_{n_{e}}} R^{\alpha_{R}} \varepsilon^{\alpha_{\varepsilon}} \kappa^{\alpha_{\kappa}} P_{loss}^{\alpha_{P}}$$

Using high-res pedestal database plus older forward- and reversed-field datasets for expanded parameter range

	(2)	(b)	(c)
	(a)	(b)	(C)
С	0.040 ± 0.066	0.014 ± 0.002	0.056 ± 0.008
I_p	0.686 ± 0.074	0.685 ± 0.076	0.676 ± 0.077
B_T	0.698 ± 0.075	0.768 ± 0.072	0.767 ± 0.072
\overline{n}_e	-0.077 ± 0.055	0.017 ± 0.048	0.006 ± 0.048
R	4.219 ± 4.623		2*
ε	0.127 ± 1.144		0.5*
κ	1.686 ± 0.398		
P_{loss}	-0.197 ± 0.048	-0.286 ± 0.042	-0.275 ± 0.042
r^2	0.713	0.685	0.683

poor fitting in R, ε , κ due to restricted range in dataset

Reduced fitting parameter set captures I-Mode physics

Both fits capture weak degradation of τ_E with heating power, strong response to current, field

Thought experiment: apply ITER98-like size dependence to I-mode scaling, extrapolate to larger machines?

I-mode behavior beneficial for global performance, confinement

- high temperature pedestal supports steep core ∇T , comparable pressure and confinement despite relaxed pedestal
- stored energy responds strongly to heating power, fueling, consistent with pedestal response
 - good news: in burning plasma, alpha heating power $\sim n_{
 m e}^2$

First-pass confinement scaling laws consistent with observed behaviors

- single-machine scaling captures strong response to current, field, weak degradation with heating power ($\tau_E \sim P^{-\alpha}$, $\alpha < 0.3$)
 - consistent with assumptions in ITER simulations leading to Q = 10 scenario⁷
- extrapolates to $\tau_E \sim 8 \, \text{s}$ for ITER(!)

⁷DG Whyte, APS-DPP Nov. 2011

- Context & Motivation
- Pedestal Modeling & Theory
- ELMy H-Mode Physics
- I-Mode Pedestals
- I-Mode Pedestal Stability
- I-mode Global Performance & Confinement
- Summary, Future Work, & Questions

Tying it all together

ELMy H-mode pedestal well-described by EPED physics assumptions

 \rightarrow we understand the limitations on baseline H-mode pedestals

I-mode evindently not subject to these limits!

- strong response of pedestal to fueling, heating power → desirable operator control, path to increase pedestal β not limited by MHD stability, transport constraints, reflected in global responses
- consistent with access, Q = 10 operation on ITER
- temperature pedestal without density pedestal desirable for reactor operation – get high core pressure, fusion reactivity with good fueling behavior, impurity handling
- pedestals inherently stable against systematic large ELMs we see either benign events, or small, intermittent events of little concern

further ELMy H-mode study?

- C-Mod work has motivated development of EPED to handle higher collisionality, stronger diamagnetic stabilization effects
- extend EPED implementation to handle more general equilibria model equilibria not a good approximation of C-Mod shape

I-mode at higher densities

- \blacksquare higher densities desirable for burning plasma $P_{lpha} \sim n_e^2$
- I-mode currently restricted to lower densities how hard can we push while maintaining temperature pedestal?
- necessary for projected ITER operation

I-mode access on other devices

- early experiments on DIII-D, ASDEX Upgrade (plus some I-mode-like observations on JET?)
- access thresholds not well-understood need to better characterize shape, collisionality range, power threshold, etc.

Pedestal characterization – WCM, ELMs + H_{α} spikes

- pedestal regulated by WCM, but underlying physics not well-understood → experiments to study mode radial extent, localization, amplitude, gyrokinetic modeling efforts
- further study in ELMs/H_α events difficult to measure profiles suitable for stability modeling on such short timescales

Supplemental Slides

JR Walk (MIT PSFC)

Pedestal Structure and Stability

8/04/14 61 / 60

Plasma shaping in C-Mod operation

- I-mode operates at typical shaping for C-Mod plasmas (with reversed *I_p*, *B_T* for unfavorable ∇*B* drift)
- ELMy H-mode on C-Mod requires special shaping with low elongation, upper triangularity, high lower triangularity – in normal shaping in forward field, reach ELM-free H-mode (low ν*) or EDA H-mode (high ν*)

EDA H-mode (on C-Mod and elsewhere)

- pedestal regulated by continuous edge fluctuation (QCM), rather than bursts of ELM transport
- steady density, $P_{rad} \rightarrow$ stationary operation possible with good performance

I-mode pedestal regulated by Weakly-Coherent Mode (WCM)

Pedestal Structure Definitions

rigorous definition for pedestal width $\Delta = 2\delta$, continuous and differentiable throughout pedestal profile

Alternate models to consider

Ion-orbit-loss models

- ion loss across separatrix $\rightarrow E_r$ well, pedestal formation
- expect ion poloidal gyroradius / banana orbit to set E_r well extent, pedestal width
- (largely discounted in favor of $\beta_{p,ped}$ scalings)

Neutral penetration models

- neutral atom penetration, ionization expected to impact density pedestal
- \blacksquare width set by neutral mean free path, $\lambda_{neutral} \sim 1/n_e$

ELMy H-mode

JR Walk (MIT PSFC)

Pedestal Structure and Stability

8/04/14 67 / 60

Density, temperature, and pressure widths in ELMy H-mode

 $\Delta_\psi = (\Delta_{n_e} + \Delta_{\mathcal{T}_e})/2$, tracks with directly-measured $\Delta_{
ho_e}$

Density pedestal width in ELMy H-mode inconsistent with neutral-penetration model

as expected from high-density, neutral-opaque SOL on C-Mod

JR Walk (MIT PSFC)

Temperature, pressure pedestal widths not well-described by gyroradius scaling

 T_e pedestal width uncorrelated; p_e pedestal width trend due to covariance between $\rho_{i,pol} \sim \sqrt{T_{e,ped}}/I_p$ and $\sqrt{\beta_{p,ped}} \sim \sqrt{n_{e,ped}}T_{e,ped}/I_p$

Minimal dependence of normalized width on shaping

no unambiguous dependence of width on toroidal field

I-mode pedestals

In contrast, density set by operator fueling, with L-mode-like profile

Plasma current a poor predictor of pedestal density, in contrast to transport-limited EDA H-modes – easy density control

$\beta_{p,95}$ scaling with norm. density in addition to heating-power response

- P_{net}/n_e sets slope of T_e/B_p line – response of pedestal temperature at fixed current
- pressure responds to fueling, provided sufficient power to maintain the pedestal

I-mode temperature pedestal width also robust, though less strictly than pressure pedestal

In Some Cases, I-Mode Forms Without WCM \tilde{n}_e visible on Reflectometry

8/04/14 77 / 60

WCM Fluctuations Visible On GPI Even When Not Seen on Reflectometry

- In test case lacking WCM on reflectometry, mode still visible on GPI
- Possible explanation: radial position of mode sits between reflectometer channels

I-Modes Lacking Reflectometer WCM Signal Clustered in Parameter Space

- I-modes lacking WCM appear consistently at higher edge q, lower temperature; span range of collisionalities
- no clear on/off condition for WCM

I-mode stability & ELM characterization

I-modes exhibiting edge H_{α} spikes / ELMs typically at lower β_p range

MHD stability analysis

JR Walk (MIT PSFC)

Pedestal Structure and Stability

8/04/14 82 / 60

ELMs associated with MHD instabilities

in high-n limit modes are easily calculated:

 $s - \alpha$ stability contour

- at high α, second stability region opens – highly desirable for high-β operation
- magnetic shear stabilizing to both modes (in first-stable region)

At finite n, peeling + ballooning modes couple

 high-n modes stabilized by diamagnetic, FLR effects – most unstable modes in range n ~ 5 - 40

 coupling closes off access to second-stable regime – need strong magnetic well (best accomplished by aggressive plasma shaping) to decouple modes, reopen access

$$\begin{split} \vec{Q} &= \nabla \times \left(\vec{\xi} \times \vec{B}\right) \\ \delta W &= \delta W_F + \delta W_S + \delta W_V \\ \delta W_F &= \frac{1}{2} \int_P d^3 \vec{r} \left[\frac{|\vec{Q}|^2}{\mu_0} + \frac{B^2}{\mu_0} \left| \nabla \cdot \vec{\xi_\perp} + 2\vec{\xi_\perp} \cdot \vec{\kappa} \right|^2 + \gamma p \left| \nabla \cdot \vec{\xi} \right|^2 \\ &- 2 \left(\vec{\xi_\perp} \cdot \nabla p \right) \left(\vec{\kappa} \cdot \vec{\xi_\perp}^* \right) - j_{\parallel} \left(\vec{\xi_\perp}^* \times \vec{b} \right) \cdot \vec{Q_\perp} \right] \\ \delta W_S &= \frac{1}{2} \int_S dS \left| \hat{n} \cdot \vec{\xi_\perp} \right|^2 \hat{n} \cdot \left[\nabla \left(p + \frac{B^2}{2\mu_0} \right) \right] \\ \delta W_V &= \frac{1}{2} \int_V d^3 \vec{r} \frac{|B_1|^2}{\mu_0} \end{split}$$

$$X = RB_{p}\xi_{\psi}$$

$$ik_{\parallel} = \frac{1}{JB} \left(\frac{\partial}{\partial \chi} + in\nu \right) \qquad \nu = JB_{T}/R$$

$$P = \sigma X + \frac{B_{p}^{2}}{\nu B^{2}} \frac{F}{n} \frac{\partial}{\partial \psi} \left(JBk_{\parallel} X \right)$$

$$Q = \frac{X}{B^{2}} \frac{dp}{d\psi} + \frac{F^{2}}{\nu R^{2} B^{2}} \frac{1}{n} \frac{\partial}{\partial \psi} \left(JBk_{\parallel} X \right)$$

$$\sigma = -\frac{F}{B^{2}} \frac{dp}{d\psi} - \frac{dF}{d\psi} = -\frac{j_{\parallel}}{B}$$

$$\begin{split} \delta W &= \pi \iint d\psi d\chi \Biggl\{ \frac{JB^2}{R^2 B_p^2} \left| k_{\parallel} X \right|^2 + \frac{R^2 B_p^2}{JB^2} \left| \frac{1}{n} \frac{\partial}{\partial \psi} \left(JBk_{\parallel} X \right) \right|^2 \\ &- \frac{2J}{B^2} \frac{dp}{d\psi} \left[\left| X \right|^2 \frac{\partial}{\partial \psi} \left(p + \frac{B^2}{2} \right) - \frac{iF}{JB^2} \frac{\partial}{\partial \chi} \left(\frac{B^2}{2} \right) \frac{X^*}{n} \frac{\partial X}{\partial \psi} \right] \\ &- \frac{X^*}{n} JBk_{\parallel} \left(X \frac{d\sigma}{d\psi} \right) + \frac{1}{n} \left[P JBk_{\parallel}^* Q^* + P^* JBk_{\parallel} Q \right] \\ &+ \frac{\partial}{\partial \psi} \left[\frac{\sigma}{n} X^* JBk_{\parallel} X \right] \Biggr\} \end{split}$$

$$\delta W = \pi \iint d\psi d\chi \left\{ \frac{JB^2}{R^2 B_p^2} |k_{\parallel}X|^2 + \frac{R^2 B_p^2}{JB^2} \left| \frac{1}{n} \frac{\partial}{\partial \psi} \left(JBk_{\parallel}X \right) \right|^2 \right\}$$
ballooning
drive
$$- \frac{2J}{B^2} \frac{dp}{d\psi} \left[|X|^2 \frac{\partial}{\partial \psi} \left(p + \frac{B^2}{2} \right) - \frac{iF}{JB^2} \frac{\partial}{\partial \chi} \left(\frac{B^2}{2} \right) \frac{X^*}{n} \frac{\partial X}{\partial \psi} \right]$$
kink
drive
$$- \frac{X^*}{n} JBk_{\parallel} \left(X \frac{d\sigma}{d\psi} \right) + \frac{1}{n} \left[PJBk_{\parallel}^*Q^* + P^*JBk_{\parallel}Q \right]$$
magnetic curvature: stabilizing inboard,
destabilizing outboard
surface term: peeling drive

ELITE solves this for given *n* by encoding the poloidal angle χ in a straight-line coordinate via the "ballooning transform,"

$$\omega = rac{1}{q} \int^{\chi}
u \; d\chi$$

(note $2\pi q = \oint \nu d\chi$) and decomposing the displacement X into poloidal harmonics

$$X = \sum_m u_m(\psi) e^{-im\omega}$$

centered on the (m, n) rational surface. Define a "fast" radial variable

$$x = m_0 - nq$$

 $m_0 = \operatorname{Int}(nq_a) + 1$

readily convertible between x and ψ .

Euler-Lagrange equation minimizing the energy may be expressed in this harmonic expansion by a set of coupled equations⁴

$$A_{m,m'}^{(2)} \frac{d^2 u_m}{d\psi^2} + A_{m,m'}^{(1)} \frac{du_m}{d\psi} + A_{m,m'}^{(0)} u_m = 0$$

describing coupling between harmonics m, m', with matrix elements A calculated from the equilibrium describing the mode amplitudes. Features:

- u_m varies rapidly (~ x, comparable to spacing between rational surfaces), needs fine mesh; A set by equilibrium parameters, varies more slowly, can be calculated on coarse mesh for numerical efficiency
- modes only couple to few nearest neighbors, so most $A_{m,m'}$ may be ignored
- can quickly calculate "fictitious eigenvalue" for stable/unstable determination, or true eigenvalue γ² for mode growth rate when inertial terms included (modifications to matrix elements A)

⁴HR Wilson et al., Physics of Plasmas **9** (2002)

ELITE radial, poloidal mode structure for n = 30 ballooning mode

BALOO solves simplified version of ballooning energy formulation, in the $n \rightarrow \infty$ limit: reduces to 1-D eigenvalue equation,

$$(L_0 + \omega^2 M_0)f = 0$$
$$X = f(\psi, y)e^{-in\int \nu dy}$$

for displacement X and ballooning-transformed angle y, given by

$$\begin{split} L_0 f &= \frac{\partial}{\partial y} \left\{ \frac{1}{JR^2 B_p^2} \left[1 + \left(\frac{R^2 B_p^2}{B} \int^y \frac{d\nu}{d\psi} dy \right)^2 \right] \frac{\partial f}{\partial y} \right\} \\ &+ f \left\{ \frac{2J}{B^2} \frac{dp}{d\psi} \frac{\partial}{\partial \psi} \left(p + \frac{B^2}{2} \right) - \frac{F}{B^4} \frac{dp}{d\psi} \left(\int^y \frac{d\nu}{d\psi} dy \right) \frac{\partial B^2}{\partial y} \right\} \\ M_0 f &= \frac{J}{R^2 B_p^2} \left[1 + \left(\frac{R^2 B_p^2}{B} \int^y \frac{d\nu}{d\psi} dy \right)^2 \right] f \end{split}$$

Stability boundary for current-driven modes set by

$$\sqrt{1-4D_M} > 1 + \frac{2}{2\pi \left(\frac{dq}{d\psi}\right)} \oint \frac{j_{\parallel}B}{R^2 B_p^3} dl$$

where

$$D_{M} = -\frac{C_{1}}{C_{2}}$$

$$C_{1} = \frac{p'}{2\pi} \oint \frac{\partial J}{\partial \psi} d\chi - \frac{(p')^{2}}{2\pi} \oint \frac{J}{B_{p}}^{2} d\chi$$

$$+ Fp' \oint \frac{J}{R^{2}B_{p}^{2}} d\chi \left[\oint \frac{JB^{2}}{R^{2}B_{p}^{2}} d\chi \right]^{-1} \left[\frac{Fp'}{2\pi} \oint \frac{J}{R^{2}B_{p}^{2}} d\chi - q' \right]$$

$$C_{2} = 2\pi (q')^{2} \left[\oint \frac{JB^{2}}{R^{2}B_{p}^{2}} d\chi \right]^{-1}$$