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> Introduction: halo neutral and 3D halo neutral model in TRANSP

» Benchmarking of beam and halo neutral calculation in TRANSP
with FIDAsIm

» Effects of halo neutrals on NPA and FIDA synthetic diagnostics
> [Effects of atomic cross sections on halo neutral calculation

» Summary
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Halo Neutrals are Created in the Vicinity of Neutral
Beam Footprint through Charge-Exchange Reactions

Fast-ion D-alpha (FIDA) Neutral Beam (NB)

beam neutrals
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Both NPA and FIDA diagnostics rely on charge-exchange (CX) reactions
between fast ions and beam/halo neutrals.  Signal cn.n_._ <ov>
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Accurate Modeling of Halo Neutrals is Important for
Proper Interpretation of Fast lon Diagnostic Signals

» Halo neutral density is comparable with beam neutral density.
—>increase NPA and FIDA signal, critical for synthetic diagnostics

—>affect fast ion CX loss, thus impact basic TRANSP calculations, e.g. NB driven
current, neutron yield, power balance

» Halo neutrals have a broader profile than beam neutrals
—>could affect spatial localization of NPA and FIDA diagnostics
—>could affect relative contribution to diagnostics from beam and halo neutrals

» A new 3D Halo model was recently developed in TRANSP/NUBEAM to
replace the incorrect “volume averaged” halo neutral model.
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3D Halo Model was Recently Developed in TRANSP/NUBEAM

»For each neutral beam source, a 3D box is aligned with and
- symmetrical around the NB centerline, and is divided into small cells.

1. Launch “weighted” beam neutrals (“markers”) at ion source
location

2. Track each marker, and record its entry and exit points and velocity
vector when it crosses a cell

3. Calculate the deposition probability and travel time in each cell
—>beam neutral (or i-th gen. halo) density in the cell

4.  Adeposition probability weighted random number generator
determines whether and where a 15t (or i+1-th) gen. halo marker
will be born.

. “Nsplit_geo” controls # of 15t (or i+1-th) gen. halos that will be
generated from their parent neutral marker.

=  Assign new weight to 1st (or i+1-th gen.) halo neutral marker
based on OyVi / (<OV>, + <oV>

cx el

ionization
More details about 3D halo Sample new velocity vector from Maxwellian (thermal halos) or
model in NUBEAM, see non-Maxwellian (fast halos)

M. N. Gorelenkova’s 2014 APS = G back to step 2, until the weight is smaller than an minimum
poster and S. S. Medley's paper requirement.

(in preparation)

*Note: a neutral marker can be terminated by an ionization event, by reaching the
minimum weight, or by exiting the 3D box

NSTX-U Benchmarking of 3D halo neutral calculation in TRANSP code and application to NSTX-U 5/24



Outline

> Introduction: halo neutral and 3D halo neutral model in TRANSP

» Benchmarking of beam and halo neutral calculation in TRANSP
with FIDAsIm

» Effects of halo neutrals on NPA and FIDA synthetic diagnostics
> Effects of atomic cross sections on halo neutral calculation

» Summary

@D NSTX-U Benchmarking of 3D halo neutral calculation in TRANSP code and application to NSTX-U 6/24



Halo Neutral Models in TRANSP and FIDAsIm Differ In
Atomic Physics

3D Halo model in TRANSP Halo model in FIDAsSImM

3D Cartesian coordinates;
Similarities | Monte-Carlo approach;
Include the effects of toroidal rotation:

Ignore quantum energy levels Solve collisional-radiative
(PREACT, ADAS, ADAS310), equations to get neutral density in
but cross section tables may each quantum energy level
include the effects of excited (n=1,2,..6)
_ states (ADAS 310) ADAS and Janev 2004 report
DI ErEmeres Time dependent Time independent (halos formed

In 1on-ion collision time scale
<< TRANSP/NUBEAM time step)

Include thermal (and fast) halo Include thermal halos only
neutrals from B-B interactions

For the benchmarking purpose
= Use ADAS ground state cross sections in both codes, ignore quantum energy levels in FIDAsIim.
= Turn off fast halo neutrals in TRANSP
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Beam and Halo Neutral Density Modeling in TRANSP and
FIDAsim are Carefully Checked with a Series of Test Cases

v Case A: a perfectly collimated neutral beam (i.e. one source with one
energy component, no divergence), flat plasma profiles, ADAS ground state
Cross section table, without rotation

v Case B: case A, but w/ realistic neutral beam geometry (i.e. one source w/
three energy components, w/ focus & divergence), w/ realistic plasma
profiles, w/ toroidal rotation

v' Case C: case B, but with multiple neutral beam sources

» CASE D: similar to Case B, but
TRANSP: ADAS310 atomic cross section tables
FIDAsiIim: cross section tables from ADAS & Janev 2004 report
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Input Plasma Profiles and Coordinate System

One beam (1B) is used in the benchmark case.
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Note: Profiles are from a projected NSTX-U discharge in S. Gerhardt NF2012
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Excellent Agreement between TRANSP and FIDAsim when
Using the Same ADAS Ground State Cross Section Tables (1)

_:- TRANSP run ID: 142302R01, ADAS ground state

0 0.5x10° 109 1.5x109 2.0x109 with source 1B, t=2.5s
30 :

20
10

0

-10

-20

-30
30

20
10
0

-
O,
Q
c
T
D
S
-
o
3
Q
o
c
)
Q.
—
@
o
X

0
20 40 60 80 100 120 20 40 60 80 100 120
L (Distance along the neutral beam centerline) [cm] L (Distance along the neutral beam centerline) [cm]

Benchmarking of 3D halo neutral calculation in TRANSP code and application to NSTX-U



Excellent Agreement between TRANSP and FIDAsIm when
Using the Same ADAS Ground State Cross Section Tables (2)

rotation
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Halo Neutrals are Composed of Halos from Multiple

Generations

TRANSP 142302R01 at t=2.5s, NPA R;,,=100cm
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Halo neutral density is
comparable with beam
neutral density.

Halo neutrals spread
wider than beam
neutrals, and the
spatial profile
broadens with the
increase in the halo
generation.
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Verification of NPA Simulators in TRANSP and FIDAsImM
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Note: only beam and halo neutrals are considered; edge neutrals from wall recycling and gas puffing are not included.
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Halo Neutral Density is Comparable with Beam Neutral Density
and Halo Neutrals Spread Broader than Beam Neutrals
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Halos neutrals spread broader than beam neutrals
= Halo diffusion
= Multi-generations
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Note: Profiles are from a projected NSTX-U discharge in S. Gerhardt NF2012
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Halo Neutrals Double NPA Flux
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Halo Neutrals Significantly Increase FIDA Signal, but Weakly
Affect FIDA Spectrum and Spatial Profile

1
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»FIDA signal is significantly increased due to large population of halo neutrals.

»The shape of FIDA spectrum and FIDA spatial profile is weakly modified.
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Halo Neutral Density is Sensitive to The Choice of
Atomic Cross Section Tables

Options of atomic cross section tables in TRANSP
(1)ADAS ground (LEV_NBIDEP=2 and NSIGEXC=0) :ground state only

(2) ADAS hybrid (LEV_NBIDEP=2 and NSIGEXC=1)
A simple excited states deposition model using enhancement factor

(3) ADAS310 (LEV_NBIDEP=2 and NSIGEXC=3) (recommended for TRANSP runs)
A consistent excited state model

Total beam deposition

25: —-—rr-r—r— P T T
N Beam w/ ADAS310 + 1 S= 5 ADAS ground (@)
L Total halos w/ ADAS310 - 23 ADAS310 _
2.0+ Oth gen. halos w/ ADAS310 1 &7 “ ADAS hybrid E
[ '\1- ] N E g 3 ;- _;
A Beam w/ ADAS hybrid === =-==-" - 3z F
15 [ Total halos w/ ADAS hybrid  -------- N Tvs% -k 3
~E \ Oth gen. halos w/ ADAS hybrid - == - --- - - R \
[ ! ' A . E
10F Total halos - 3% 20F (b)
[} S sk Beam deposition -CX ]
- 0w E TF r
L QG F J
0.5 . 1st gen. halos - @f 1 01 ]
[ \\\ _.= % %E “t :
5 NG (O L 4
ol L ... _ 1 0.5k . . L ~=
20 40 60 80 100 120 140 160 0 0.2 04 0.6 08 10

Distance along the NB centerline [cm] sqrt(toroidal flux)

NSTX-U Benchmarking of 3D halo neutral calculation in TRANSP code and application to NSTX-U 19/24



Beam and Halo Neutral Density Modeling in TRANSP and
FIDAsim are Carefully Checked with a Series of Test Cases

v' Case A: a perfectly collimated neutral beam (i.e. one source with one
energy component, no divergence), flat plasma profiles, ADAS ground state
cross section table, without rotation

v'  Case B: case A, but w/ realistic neutral beam geometry (i.e. one source w/
three energy components, w/ focus & divergence), w/ realistic plasma
profiles, w/ toroidal rotation

v' Case C: case B, but with multiple neutral beam sources

» CASE D: similar to Case B, but
TRANSP: ADAS310 atomic cross section tables
FIDAsIim: cross section tables of different qguantum energy level
from ADAS & Janev 2004 report
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Case D: TRANSP and FIDAsIim Predictions of Halos are Similar in
Shape, but Different in Magnitude (1)
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Case D: TRANSP and FIDAsIim Predictions of Halos are Similar in
Shape, but Different in Magnitude (2)
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» TRANSP calculated halo neutral density is ~20% larger than FIDAsIim prediction
because different atomic cross sections tables are used in TRANSP and FIDAsIm.
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Beam and thermal Emissions from FIDAsIm Simulations

Agree with Experimental Measurements
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FIDAsim calculated beam and thermal emission agrees well with experimental measurements

—>Beam and halo neutral density and profile from FIDAsim (and TRANSP) are reasonable.
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Summary

» When using the same cross section databases, TRANSP & FIDAsIim predictions
of beam & halo neutral densities get excellent agreement in both magnitude &
spatial profile.

—>verify the halo models in TRANSP and FIDAsIm

» Halo neutral density is comparable with beam neutral density and halo neutrals
spread broader than beam neutrals due to multi-generations and halo diffusion.

» Halo neutrals significantly increase the NPA flux and FIDA emission, but they
have minor effects on NPA energy spectrum or FIDA spectrum/spatial profile.

» The calculation of halo neutral density (and also fast ion density, NBCD, neutron
rate) is relatively sensitive to the choice of atomic cross section databases.
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Beam and Halo Neutrals are Calculated Self-consistently with
Monte-Carlo Method in FIDAsIm

Follow?
Monte Carlo Injected

FIDAsim: a synthetic diagnostic code Neutral Markers | —> <> Y —> |[ralectory

. N Out: time in cells
> A
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. & >
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g™ © | In: states, time
DG SpeCtl’um, and NPA 3 ¢ | Out:states
=z o
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B. Geiger 2012 PhD Thesis *More details about FIDAsIim code, visit, https://github.com/D3DEnergetic/FIDASIM/
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Effects of Choices of Atomic Cross Section Tables
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Benchmark Work Benefits both FIDAsim and TRANSP

» The benchmark work help resolve a few issues in both FIDAsim and
TRANSP codes.

= FIDAsim code

(1) Improve the NPA attenuation calculation

(2) Improve the mapping of fast ion density along the NPA sightline

= TRANSP/NUBEAM code

(1) Fix a bug in the calculation of relatively velocity

(2) Fix a bug related with the sign of rotation

(3) Resolve left-handed or right-handed coordinate system confusion

(4) Resolve the inconsistency between 3D box output data and NPA sightline
diagnostic output

(5) Improve the control of statistics of halo neutral calculation
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