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INTRODUCTION
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• Numerous fast ion instabilities have significant effect on beam-ion
confinement at NSTX:

 Abrupt Large Events (ALE)

 Energetic Particle Modes (EPM)

 TAE modes and TAE avalanches

• In a recent study* a database of ~360 time instances from ~170 shots
(year 2010) was assembled. Correlations between typical parameters
relevant for beam ion confinement were established:

<βfast> / <βtotal>      Vfast / VA δS/S         δB/B

• We extend this database with data from the vertical Fast Ion Dα (FIDA)
diagnostic, and corresponding FIDASIM simulations which assume no
beam ion loss.

* E. Fredrickson et al., "Parametric dependence of fast-ion transport events on the NSTX",” Nucl. Fusion 54 (2014) 093007
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Fredrickson classified the different types of instabilities
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Eric found where the various instabilities occur in parameter 
space

4

• Avalanches & ALEs require 
large βfast

• Quiescent conditions at 
higher ne

E. Fredrickson et al., "Parametric dependence of fast-ion transport events on the NSTX",” Nucl. Fusion 54 (2014) 093007
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Vertical FIDA data were routinely archived in 
2010

Plan view Elevation
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Outline
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• Construction of the Database
• General Trends
• Effect of ALE, TAE avalanche, EPM, and steady TAEs
• Conclusions
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Use the net signal on the blue-shifted side
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• The FIDA light is the 
difference between the 
active and passive 
views

• Wavelengths of interest 
are between the dotted 
lines

• The red-shifted side is 
ignored
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Use NUBEAM & FIDASIM to predict the signal
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• Beam ion distribution functions fb is calculated with TRANSP using classical
modeling with identical parameters for all shots, including:

 ADAS atomic physics data

 N=20,000 Monte Carlo particles

 fb is averaged over 20ms around the time of interest (TOI)

 External neutral density N0= 5x1010 cm-3

• 16 FIDA spectra are calculated with the FIDASIM code for each of the
~360 times of interest. In subsequent analysis, beam ions with energy
component along the s-FIDA line of sight in three energy bands are
considered:

 Full energy range E1: 11.5-68.0 keV, λ=650.5-653.8nm

 Low energy range E2: 11.5-31.3 keV, λ=652.3-653.8nm

 High energy range E3: 31.3-68.0 keV, λ=650.5-652.3nm

• Specialized software tools were written to facilitate the massive data
preparation for TRANSP and FIDASIM modeling and data analysis.
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Compare experimental & theoretical spectral 
shapes
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Theory spectra are:
1. Smoothed with an instrument broadening function and mapped to the 

experimental lambda grid 
2. Fitting is done over the full E1 energy range, i.e. 650.5-653.8nm (dashed vertical 

lines)

• Compare data 
with “null 
hypothesis”

• Upper row has 
χ2 ~ 420; lower 
χ2 ~ 1

• Use quadratic 
fits to look for 
systematic 
discrepancies 
at low/high 
Doppler shift 
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Compare experimental & theoretical profile 
shapes
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• Integrate spectra 
over three 
wavelength 
ranges for all 16 
channels

• Fit profiles to find 
(1) peak radiance, 
(2) R of peak,        
(3) profile width
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Analyze spectra at three times (relative to the 
instability)
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• Data acquired in 10 ms
time bins

• Light blocked during 
readout (last ~1.8 ms of 
bin)

• Analysis times carefully 
selected

• Note in database whether 
activity is persistent, an 
isolated burst, etc.

TO
I
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Outline
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• Construction of the Database
• General Trends
• Effect of ALE, TAE avalanche, EPM, and steady TAEs
• Conclusions
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Time evolution of a representative shot
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(a) Peak radiance in theory & 
experiment

(b) Neutrons in theory & 
experiment

(c-e) ne, Te, and Zeff at center 
and half-radius
(f) Calculated fast-ion and
injected-neutral densities at 
R=1.2 m
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MHD activity in the representative shot
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• Wide variety of MHD but the 
correlation with the general 
trends in the FIDA data is 
weak
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FIDA profiles show persistent trends 
throughout the shot
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• Theory is larger than 
experiment

• Theory profile usually peaks 
at larger R than experiment

• Theory profile is narrower 
than experiment
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FIDA profiles show persistent trends 
throughout the database
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• On average, the peak 
radiance is 0.37 of theory but 
strongly correlated (r=0.88)

• Agreement best at higher ne
(lower βf, slowing-down time)

• Weak correlation with other 
plasma parameters

• Peak radius is 𝟏𝟏𝟏𝟏𝟏𝟏 ± 𝟑𝟑 cm in 
experiment but 𝟏𝟏𝟏𝟏𝟏𝟏 ± 𝟑𝟑 cm in 
theory

• Experimental profile 30% 
wider than theory

• Similar results for other 
wavelength ranges
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What causes this discrepancy?
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1. Procedure is flawed.  No. The same procedure works well for DIII-D 
and ASDEX-Upgrade.

2. Experimental calibration is wrong.  Unlikely. (Hard to get both 
magnitude & shape wrong)

3. Inputs to theory are wrong.
(a) Beam power or Te. No.  (Makes neutron agreement worse.)
(b) Density wrong. No. (Need more density to fix intensity but less to 

fix peak location.)
(c) Zeff.  No.

4. Charge exchange losses are underestimated. No.
5. An unidentified process redistributes the fast ions. Probably. 

(Product of peak*width agrees better than either individually; 
better agreement at higher ne expected.)
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Flawed Zeff input cannot explain discrepancy
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• Scaled carbon 
density up & down 
25%

• Alters predictions but 
not enough

• Also increases 
discrepancy with 
neutrons

Low Density High Density
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What causes this discrepancy?
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1. Procedure is flawed.  No. The same procedure works well for DIII-D 
and ASDEX-Upgrade.

2. Experimental calibration is wrong.  Unlikely. (Hard to get 
magnitude & shape wrong systematically)

3. Inputs to theory are wrong.
(a) Beam power or Te. No.  (Makes neutron agreement worse.)
(b) Density wrong. No. (Need more density to fix intensity but less to 

fix peak location.)
(c) Zeff.  No.

4. Charge exchange losses are underestimated. No.
5. An unidentified process redistributes the fast ions. Probably. 

(Product of peak*width agrees better than either individually; 
better agreement at higher ne expected.)
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Edge charge-exchange losses cannot explain 
discrepancy
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• Increased edge 
neutral density two 
orders of magnitude 
over baseline

• Small change in 
predicted profile
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What causes this discrepancy?
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1. Procedure is flawed.  No. The same procedure works well for DIII-D 
and ASDEX-Upgrade.

2. Experimental calibration is wrong.  Unlikely. (Hard to get 
magnitude & shape wrong systematically)

3. Inputs to theory are wrong.
(a) Beam power or Te. No.  (Makes neutron agreement worse.)
(b) Density wrong. No. (Need more density to fix intensity but less to 

fix peak location.)
(c) Zeff.  No.

4. Charge exchange losses are underestimated. No.
5. An unidentified process redistributes the fast ions. Probably. 

(Product of peak*width agrees better than either individually; 
better agreement at higher ne expected.)
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What could this unidentified process be?
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• A persistent mode undetected by magnetics
• Fast-ion transport by electromagnetic microturbulence
• Error field
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Outline
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• Construction of the Database
• General Trends
• Effect of ALE, TAE avalanche, EPM, and steady TAEs
• Conclusions
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Every ALE causes profile flattening

• Profile immediately after the burst is 
𝟏𝟏.𝟖𝟖𝟏𝟏 ± 𝟏𝟏.𝟏𝟏𝟎𝟎 of prior profile.

• No systematic change in spectral 
shape

• Consistent with JT-60U neutron profile 
measurements and modeling
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TAE avalanches usually cause profile 
flattening

• Nearly all cases show flattening
• No systematic change in spectral 

shape
• Consistent with Darrow’s conclusion 

that losses are broadly distributed in 
phase space
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EPMs cause profile flattening

• Flattened profile persists in 
subsequent time slices

• No systematic change in spectral 
shape
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TAEs are too rapid to detect effect of 
individual events

• As expected, successive time 
bins are virtually identical

• Agreement good at small 
major radius but poor at large 
major radius
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There is a shortfall of high energy ions at 
large major radius in the TAE shots
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Fitting Example Steady TAE Shots

• Fit to a quadratic
• Perfect agreement: (0) =1; 

(1) & (2) = 0
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Conclusions & Outlook

• The experimental radial profile has smaller radiance, is wider,
and peaks at smaller major radius than theory predicts.

• An unidentified persistent fast-ion transport mechanism is the
most likely explanation.

• ALEs, TAE avalanches, and EPMs flatten the FIDA profile without
appreciably altering the spectral shape.

• There is a shortfall of high-energy fast ions at large major radius
during TAEs.

We’ll investigate all of these issues with better profile diagnostics in
NSTX-U!
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