

Supported by

Development of Bolometry **Diagnostics for NSTX-U**

M.L. Reinke (ORNL)

and the NSTX Research Team

NSTX-U Physics Meeting PPPL 8/10/15

Inst for Nucl Res, Kiev ASCR, Czech Rep FOM Inst DIFFER CEA, Cadarache Chonbuk Natl U ENEA, Frascat Kyushu Tokai U Culham Sci Cti IPP, Garching Seoul Natl U Hiroshima U IPP, Jülich POSTECH Kyushu U loffe Insi Niigata U Hyogo U Chubu U U Tokyo Kyoto U CIEMAT Fukui U U. York TRINITI ASIPP KAIST JAEA NIFS NFRI

UCSD X Science LLC **U** Wisconsin **U** Washington U Tennessee **U** Rochester **U** Maryland U Illinois SNL PPPL LLNL LANL FE Columbia U U Tulsa U Colorado UC Irvine UC Davis Purdue U ORNL Johns Hopkins U General Atomics CompX Coll of Wm & Mary UCLA Think Tank, Inc. Princeton U Nova Photonics Lehigh U Lodestar

Motivation

- knowing power loss from radiation an important
- NSTX was under-diagnosed in this area, and presently measurement to support tokamak operations and physics
- configured NSTX-U is as well

Tokamak	Resistive	AXUV
NSTX-U	0	08
C-Mod (FY15)	28	64
C-Mod (FY11)	32	172 + (80 Ly _a)
ASDEX-U	112	256
MAST-U	64	0
JET	76	0
TCV	64	140
DIII-D	48	20

- at high heating power, NSTX-U heat flux mitigation critical
- radiative exhaust a robust tool, widely used
- without diagnostic
 upgrades we will lack
 data for physics studies
- an ability to communicate research w/ other devices

Overview

- different radiation measurement techniques
- discuss AXUV diodes and resistive bolometers
- demonstrate AXUV diodes are insufficient for power balance
- team and feasibility radiation measurement desires from the NSTX-U
- divertor resistive bolometers for FY17 NSTX resistive bolometer and plans for NSTX-U
- viewing geometry of J-UPPER and I-LOWER pinhole cameras
- signal estimates; crude and using SOLPS
- survivability of sensors
- and global radiation measurements considerations for longer term development of core

What is Meant By the Term 'Bolometer'?

4-channel resistive bolometer from IPT-Albrecht

IRD (now Optodiode)

20-channel AXUV diode from IRD (now Optodiode)

- literal: measurement of something thrown, bolo
- practical definition is the measurement of incident radiation through a rise in temperature
- 'resistive' bolometer via resistance change
- measured via AC-excited Wheatstone bridge
- 'IR' bolometer via IR emission
- both use 'foils' to absorb radiation
- incident radiation a 'brand name' diode are Si sensors that generate photocurrent from Absolute eXtreme UltraViolet (AXUV) diodes
- use 'bolometer' when referring to AXUV diodes expectation both in and out of fusion is to NOT designed to be sensitive to low energy photons
- need to change PPPL vocabulary to avoid confusion inside and outside the group

AXUV Diodes and Bolometers Have Different Sensitivity

- neither AXUV diodes nor bolometers are perfect
- foils reflect light in visible, but generally low power loss
- foils absorb neutral power loss

AXUV Diodes and Bolometers Have Different Sensitivity

- bolometers are perfect neither AXUV diodes nor
- foils reflect light in visible, but generally low power loss
- foils absorb neutral power loss
- during operations (VUV, neuts? demonstrated to be damaged AXUV diodes have been stabilizes after a certain 'burn-in
- C-Mod going on 8 years OK
- AUG replaces year-to-year
- testing shows decay > 100 eV, uncertainty in response below
- no one yet has shown the

While Slow, Bolometers Measure Greater Radiation Losses

- resistive bolometer and AXUV examples from C-Mod tangential strong n_z-puffing into Ohmic plasmas
- clear signal differences noticeable observed to depend on r/a
- while foil bolometers respond slowly AXUV diodes proportional response
- must be corrected for time constant

$$Br = Br_m - \tau * \frac{dBr_m}{dt}$$

Br_m

$$Br = Br_m - \tau * \frac{dt}{dt}$$

$$Br = Br_m - \tau * \frac{dt}{dt}$$

Br_m/dt

 $\tau \sim 100$ ms, can evolve post-disruption

difficult to resolve fast transients

impurity injections

ELMs (done on AUG, JET)

sawteeth, NTMs

divertor oscillations (i.e. Potzel fluc.)

-0 2

0.0

0.2

0.4

0.6

0<u>.</u>8

1.0

r_{TANG}/a

with AXUV-diode based diagnostics cannot accurately do power balance

- cannot explicitly correct as AXUV sensitivity is unknown – perhaps a neural network?
- depends on T_e and impurity species

Brightness [MW/m²]

N

3 דדד פר י

- ratio of FOIL/AXUV varies $2\rightarrow 4$

AXUV: 0.8 MW radiated power

example from C-Mod tangential

AXUV Diodes Are Insufficient for Power Balance

- resistive bolometer and AXUV
- ICRF-heated inner-wall limited L-mode
- Mo dominated $T_{e,0}$ =3 keV $n_{e,0}$ =1.8x10²⁰ m⁻³
- on-axis signals agree, higher T_e due to
- x-ray dominated emission from Mo
- integrate profiles over plasma volume assuming poloidal symmetry

Desires for Radiation Measurements from NSTX-U Team

Transport, RF & Macrostability

- power balance, SOL & core localized radiation during RF
- radiation within islands
- radiation during disruption

Scenarios

- total radiated power (1 kHz), available between shots
- radial profile of core radiation for high-Z/low-Z estimates
- radiated power available for feedback control

Pedestal, Boundary

- pedestal resolved (1 cm resolution), with 1-2 kHz time resolution
- power balance, divertor vs. core radiation, upper vs. lower div.
- 2D (R,Z) reconstructions of radiated power density in divertor
- 3D radiation distribution w/ non-axisymmetric fields

- Transport, RF & Macrostability
- power balance, SOL & core localized radiation during RF

AXUV Diodes

Bolometers

Resistive

- radiation within islands
- radiation during disruption (int. energy loss)
- Scenarios
- total radiated power (1 kHz) (100 Hz) available between shots
- radial profile of core radiation for high-Z/low-Z estimates
- radiated power available for feedback control (likely both)
- Pedestal, Boundary
- pedestal resolved (1 cm resolution), with 1-2 kHz time resolution
- power balance, divertor vs. core radiation, upper vs. lower div.
- 2D (R,Z) reconstructions of radiated power density in divertor*
- 3D radiation distribution w/ non-axisymmetric fields*
- *exploit IR-imaging bolometers?

Timetable for Radiation Measurements for NSTX-U

- Transport, RF & Macrostability
- power balance, SOL & core localized radiation during RF
- radiation within islands
- radiation during disruption (int. energy loss)

FY18+

FY17

- Scenarios
- total radiated power (1 kHz) (100 Hz) available between shots
- radial profile of core radiation for high-Z/low-Z estimates
- radiated power available for feedback control
- Pedestal, Boundary
- pedestal resolved (1 cm resolution), with 1-2 kHz time resolution
- power balance, divertor vs. core radiation, upper vs. lower div.
- 2D (R,Z) reconstructions of radiated power density in divertor
- 3D radiation distribution w/ non-axisymmetric fields

Capabilities for FY15/16 NSTX-U Operations

- midplane AXUV (Bay-G)
- x2 20-channel AXUV diode arrays
 view tangentially on midplane
- resolve in/out asymmetry
- compute estimate of core radiated power by volume integrating
- edge AXUV (Bay-G)
- 20-channel LFS edge
- tangential view just below midplane
- unfiltered portion of ME-SXR
- divertor AXUV (Bay-G)
- the Ly_{α} camera w/o Ly_{α} filter
- 20-channel poloidal view
- spans divertor region and LFS edge

Existing NSTX Resistive Bolometer System

- x3 pinhole cameras at J-UPPER (8-ch), I-LOWER (8-ch) and J-MIDPLANE (4-ch, not shown) highlighting the divertor never utilized, prior iterations had far fewer channels installed
- no hardware was reinstalled for NSTX-U

Z (m)

0.0

0.5

1.0

<u>1</u>.5

NSTX

ר. היי

0.0

0.5

<u>--</u>

-0.5

Existing NSTX Resistive Bolometer System

- J-MIDPLANE (4-ch, not shown) highlighting the divertor x3 pinhole cameras at J-UPPER (8-ch), I-LOWER (8-ch) and never utilized, prior iterations had far fewer channels installed
- no hardware was reinstalled for NSTX-U

NSTX-U Bolometry Overview – Monday Physics Meeting 8/10/2015

Estimates Suggest Sufficient Radiation in Many Scenarios

- use radiated power fractions to esimate signal levels
- I core emissivity = f_{RAD}*f_{CORE}*P_{HEAT}/Vol_{CORE}
- 'divertor' emissivity = f_{RAD} (1- f_{CORE})* P_{HEAT} /Vol_{DIV}
- line integrate through both volumes

Further Scoping Using SOLPS Simulations (J. Lore)

- density scan at 10 MW to access different divertor regimes
- results show movement of narrow radiation features

NSTX-U Bolometry Overview – Monday Physics Meeting 8/10/2015

Spatial Resolution Sufficient, Possibly Too Constrained

- diagnostic design (GENPOS) ported tools from C-Mod to assist in
- assumes axisymmetry
- grid detector/aperture and traces
- hyperbolic paths through tokamak
- plot 'voxel' weightings on (R,Z) plane (contour plots – left)
- which doesn't exploit axisymmetry to old design uses a circular pinhole increase signal

Spatial Resolution Sufficient, Possibly Too Constrained

- diagnostic design (GENPOS) ported tools from C-Mod to assist in
- assumes axisymmetry
- grid detector/aperture and traces
- hyperbolic paths through tokamak
- plot 'voxel' weightings on (R,Z) plane (contour plots – left)
- which doesn't exploit axisymmetry to old design uses a circular pinhole Increase signal
- increase signal by x5 by increasing toroidal extent of aperture
- flexibility in signal/resolution optimization

be NSTX-U relevant 'tweaked' views to **Radiation Structures Observable with Sufficient Signal**

- based on finite ap. computed signals
- $f_{RAD} < 10\%$
- $f_{RAD} \sim 30\%$ (shown)
- f_{RAD} ~ 75%
- approach noise floor at low f_{RAD}, signals
- 'hand-off' to the IR for power balance
- w/ small changes,
- system feasible for
- lower divertor

FY17 operations

Need to Improve Thermal Management During Bake

I-LOWER camera without 'snout' that has aperture

- bolometers thought to be tied to bake previous failure of the resistive survive C-Mod, AUG ~ 150 °C, no cooling
- survive DIII-D 300 °C bake (different res. bolometer) w/ active cooling and interlock!
- thermal management of gold foil cooling design is very poor if goal is
- bolometer housing is not physically attached to copper cooling sink
- attached to stainless shield plate
- must radiatively cool w/ heat sink
- gold foil element is designed to have poor conduction to housing which is what makes it a good bolometer
- it sees wide angle view of 'snout' which is up at bake temperature

than through it! temperature element rather

- collimate FOV of foil element from structures at bake temp
- route heat around critical

use the bolometer itself to monitor the temperature, no thermocouple needed

Concepts to Improve Bolometer Survivability

- calibrate the 'time constant' the pinhole
- camera to external heating
- bolometer \rightarrow comparator circuit \rightarrow EPICS, monitor time evolution, shut down the bake

improve mechanical design to

better handle heat bake

double cooling loops?

attach bolo housing to heat sink

Operations Support – Global '2π' Bolometer

channel wide-angle view (C-Mod: diode & foil) sacrifice localization and for a robust 'global' radiation from a single

(Bar

If Wishing Made It So.....

- scoping for 84-channel to deliver on objectives discussed earlier
- power balance, core vs. divertor radiation, intershot analysis
- which is usually established *early* in the life cycle of most tokamaks large demand on resources, but looking to deliver measurement

- scoping for 84-channel to deliver on objectives discussed earlier
- power balance, core vs. divertor radiation, intershot analysis
- which is usually established *early* in the life cycle of most tokamaks large demand on resources, but looking to deliver measurement
- moves us closer to system like ASDEX-Upgrade which has sufficient AXUV

make minimal hole for FOV, set aperture back from duct wall

Core Radiation From Tangential View?

- tangential midplane view optimal to measure core radiation
- easy to interpret, overcomes largest pol. asymmetry (IN/OUT)
- suggest exploring view from NBI-2 beam duct
- compact pinhole cameras can utilize space between VV & coils

(C

suggest exploring view from NBI-2 beam duct

compact pinhole cameras can utilize space between VV & coils

I

tangential midplane view optimal to measure core radiation

Core Radiation From Tangential View?

easy to interpret, overcomes largest pol. asymmetry (IN/OUT)

a 32-channel system could view from LFS to HFS and doesn't NOT fit

Try to Increase Channel Count per Flange

48-channel analyzer from D-tAcq (prototype)

Drawing 3: 6x BOLO8BLF in ACQ2006 - 48 Channel System

present electronics are expensive take up significant space

Try to Reduce Analyzer Cost/Channel

- 12 k\$ per 4-channel unit
- GPIB-based configuration and control
- development and demonstration new FPGA-based system under
- motivated by MAST-U cost needs

4-channel analyzer/amplifier from IPT-Albrecht

- G. Naylor (CCFE), J. Lovell & R. Sharples (Durham Univ.)
- data from Univ. of York bolo test-stand
- by D-tAcq so it plays well with MDSPlus
- 15 k\$ for 32-channel unit

Summary

- NSTX-U stands out amongst large fusion facilities by its lack of resistive bolometers
- resistive bolometers are necessary for power balance and cannot be replaced by AXUV diodes
- AXUV diodes complement resistive bolometers
- existing designs for resistive bolometers viewing the lower divertor should be adaptable for FY17 ops
- development needed beyond FY17 to deliver need to adjust lines of sight, throughput & thermal management
- measurements necessary for power balance & more
- several risk (IR, resistive) and cost (port space, \$\$) mitigation strategies need to be considered