H-mode and ELM Studies at Near-Unity Aspect Ratio

Kathreen E. Thome with thanks to the PEGASUS Team

University of Wisconsin-Madison PPPL and LLNL

Princeton, NJ Sept. 9, 2015

PEGASUS Toroidal Experiment

- Motivation and Introduction to PEGASUS
- Standard H-mode Characteristics
- Power Threshold
- ELM Characteristics and Dynamics
- Conclusion

Understanding H-mode Physics is Critical to the Viability of Fusion Reactors

PEGASUS **Peeling Modes**

- Equilibrium, stability properties documented
 - No accepted first-principles model, knowledge empirical
- Parameter variations critical to test, validate theories of H-mode, ELM behavior
 - A changes H-mode access, equilibrium, and stability
 - Low-A H-mode similar, differs with high-A
- $A \sim 1$ operations \rightarrow AT physics
 - High I_p at very low B_T
 - Modest-sized plasma and relatively low T_e
 - Allows diagnostic access to pedestal

Bongard *et al.*, Phys. Rev. Lett **107**, 035003 (2011). Bongard *et al.*, Nucl. Fusion **54**, 114008 (2014).

2m

Experimental Parameters

А	1.15 - 1.3
R (m)	0.2 - 0.45
I _p (MA)	≤ 0.25
$\mathbf{B}_{\mathrm{T}}(\mathrm{T})$	< 0.2
$\Delta t_{\rm shot}\left({ m s} ight)$	≤ 0.025
Z_{eff}	~ 1
Recy. Coeff.	<< 0.7

Recent upgrades for H-mode studies:

- HFS fueling
- New external divertor coils
- Radial field coils
- Edge current injection startup (LHI) for MHD control (future)

K.E. Thome, PPPL Seminar 2015

• $A \approx 1 \rightarrow \text{low } B_T \rightarrow \text{low } P_{LH}$ $P_{LH} \sim n_e^{0.717} B_T^{0.803} S^{0.941}$

- H-mode achieved
 - HFS fueling
 - Similar to other STs
 - Limited or diverted plasmas

Fast visible imaging, $\Delta t \sim 30 \ \mu s$

MADISO

¹ Journal of Physics: Conference Series, **123**, 012033 (2008). ² Plasma Phys. Control. Fus., **46**, A227 (2004).

- Quiescent edge
 - Edge current and pressure pedestals
- Reduced D_{α}
- Large and small ELMs
- Bifurcation in ϕ_D

- At $A \sim 1$, indicates current redistribution

- At A~1.2, high-A cylindrical approximations not valid
 - Virial integrals S_1 , S_2 , $R_t/R_0 \neq 1$
 - Overestimates β_{pol} , W_k
- Equilibrium reconstructions necessary to calculate τ_{e}
 - Needed for W_k and dW/dt
 - dW/dt ~ 30% P_{OH}
 - Short pulse, not in transport equilibrium
- Established H-mode plasmas H₉₈~1
- Pegasus-U = transport equilibrium

	τ _E (ms)	H ₉₈
Limited L-mode	1.5	~0.5
Limited H-mode	2 – 3	~1
Diverted H-mode	3	~1

T_i and T_e Increases Indicated in H-mode

• OH plasmas: T_i << T_e

• Impurity T_i doubles

- Increasing T_e(0) indicated
 - Increasing, peaking CV emission
 - Preliminary Thomson scattering
 - L-mode: $T_e(0) \sim 160 \text{ eV}$
 - H-mode: $T_{e_{-}H}(0) > T_{e_{-}L}(0)$

K.E. Thome, PPPL Seminar 2015

Time [ms]

- Current pedestal observed
 - Measured with Hall Probe^{1,2} array
 - $L \rightarrow H: 4 \rightarrow 2 \text{ cm}$

- Preliminary Langmuir probe scans indicate pressure pedestal
 - Single-point, multi-shot profile
 - Some edge distortion present from MHD

K.E. Thome, PPPL Seminar 2015

P_{LH} Measured in PEGASUS at A≈1.2

- P_{LH} from varying P_{OH}
 - Transition time from ϕ_D bifurcation
 - Wide parameter range
 - P_{OH} = 0.1 0.6 MW
 - $n_e = 0.5 4x10^{19} \text{ m}^{-3}$
 - Limited: Centerstack
 - Diverted: USN (favorable ∇B)
- $P_{LH_exp} = P_{OH} dW/dt$
 - dW/dt by magnetic reconstruction
 - $\sim 30\%$ correction

Shot survey of L and H-mode plasmas at different P_{OH} and n_e

Density minimum not apparent

Diverted and limited P_{LH} similar - Comparable topology: *e.g.* $q_{lim}(\psi) \approx q_{div}(\psi)$

- P_{LH} increasingly diverges from expectations as $A \rightarrow 1$
- Discrepancy may hint at additional physics

¹ Nucl. Fusion, **50**, 064010 (2010).

K.E. Thome, PPPL Seminar 2015

² Journal of Physics: Conference Series, **123**, 012033 (2008).

³ <u>Tokamaks</u>, 4th ed. (2011), p 630

 FM³: Predicts P_{LH} minimum for PEGASUS at n_e ~ 1 x10¹⁸ m⁻³

 $- n_e/n_G << 0.1$, inaccessible due to runaways

 P_{LH} topology independence: selfsimilar q profiles at A ~1

$$\frac{P_{L-H}^{\lim}}{P_{L-H}^{div}} \approx \left(\frac{q_*^{\lim}}{q_*^{div}}\right)^{-7/9} \longrightarrow 1 @A \sim 3$$
$$\longrightarrow 1 @A \sim 1$$

- Model does not explain strong P_{LH} dependence on A
 - Multi-Machine P_{LH} Studies Proposed (NSTX-U, DIII-D, PEGASUS)

¹ Fundamenski W., Militello D., Moulton D., McDonald D.C., Nucl Fusion **52**, 062003 (2012).

Small and Large ELMs are Seen

- Filament structures observed
 - Coincident with D_{α} bursts ____
- Small ("Type III") ELMs ubiquitous, less perturbing
 - $P_{OH} \sim P_{LH}$
- Large ("Type I") ELMs infrequent, violent
 - $P_{OH} >> P_{LH}$
 - Can cause H-L back-transition

Quiescent 0.20

- Measured with near-edge
 magnetics probe
- Type III: A dependent
 - $-A \le 1.4: n \le 1-3$
 - PEGASUS and NSTX
 - $A \sim 3: n > 8$
- Type I: A independent
 - Intermediate-n, $n \sim 4 12$
 - Low and high-A similar, but low-A lower n
- Increased peeling drive at low
 A (higher J_{edge}/B) → lower n

¹Nucl. Fusion **45**, 1066 (2005). ²Nucl. Fusion **38**, 111 (1998). ³Nucl. Fusion **52**, 609 (2004).

- Magnetic signature of ELMs have multiple n components
 - Simultaneously unstable modes

- Modes show different time evolutions (isolated with bandpass filter)
 - n = 8 grows continuously
 - n = 6 fluctuates prior to crash

K.E. Thome, PPPL Seminar 2015

Type I ELM J_{edge}(R,t) Dynamics Measured Throughout Single ELM Cycle

- Complex J_{edge}(R,t) evolution
 - 1) Modest but steep pedestal
 - 2) Rapid buildup until crash
 - 3) Collapse: wider pedestal
 - 4) Current-hole filament ejection
 - 5) Recovery: After ELM

 J_{edge}(R,t) measurements similar to JOREK MHD¹ simulations

K.E. Thome, PPPL Seminar 2015 ¹ Plasma Physics Control. Fusion. **53**, 054014 (2011).

Closer Inspection of J_{edge} Reveals Complex Dynamic Behavior

 With less spatial smoothing, J_{edge}(R,t) evolution through ELM cycle shows complex multimodal behavior

 Challenge: study nonlinear ELM dynamics at Alfvénic timescales

These Exploratory H-mode Studies Provide Motivation for Upgraded PEGASUS

- Unique opportunities for nonlinear pedestal and ELM studies
 - Simultaneous measurements of p(R,t), J(R,t), $v_{\phi}(R,t)$ through ELM cycles
 - Compare to and help validate nonlinear simulations
- ELM modification and mitigation
 - LHI, 3D-Magnetic Perturbation
- Upgrade
 - New Centerstack = longer pulse, higher B_T
 - Comprehensive 3D Magnetic Perturbation
 - Edge Diagnostics with high spatiotemporal resolution

- H-mode achieved in plasma with simple diagnostic access
 - Standard characteristics: pedestal; low D_{α} ; increased τ_e ; $H_{98} \ge 1$; etc.
- Features unique to low-A emerging
 - Strong P_{LH} threshold scaling with A
 - Little to no difference between limited and diverted H-modes
- Operating regime allows detailed studies of ELMs
 - ELM Mode numbers at low-A systematically lower than high-A
 - J_{edge}(R,t) through ELM event shows some correspondence with simulations
- Overall, complements experiments on larger fusion facilities
 - Detailed measurements can elucidate more limited results on larger facilities

