<u>MP 2015-05-23-001: Isolation of NTV torque profile:</u> <u>Dependence on plasma collisionality and NTV</u> <u>offset rotation – BRIEF summary</u>

S.A. Sabbagh¹, Y.-S. Park¹, Y. Jeon², Y.S. Bae², J.G. Bak², J. Chung², S.H. Hahn², H. Han², Y. In², J.H. Kim², J.Y. Kim², J. Ko², W. Ko², J.G. Kwak², J. Lee², Y.K. Oh², H.K. Park³, K.C. Shaing⁴, H.L. Yang², S.W. Yoon², G. Yun³

¹Department of Applied Physics, Columbia University, New York, NY, USA ²National Fusion Research Institute, Daejeon, Korea ³UNIST, Ulsan, Korea ⁴National Cheng Kung University, Tainan, Taiwan

presented at the

NSTX-U Physics Meeting PPPL October 6th, 2015

(those

in red)

marked

1

<u>MP2014-05-02-007 aims to compute NTV profile</u> accurately using IPS, also v dependence, and offset

Motivation

- For the first time on KSTAR, the new IPS will allow the accurate isolation of the non-resonant NTV torque *profile*, with quantitative comparison of experiment to theory
- Additional attention to NTV parameters:
 - Dependence of NTV profile on plasma collisionality and q variation
 - Measurement of NTV offset rotation
- Overall Goals (see full MP write-up for all detail)
 - Use KSTAR's new IPS power supply to perform an isolated measurement of the NTV torque profile for the first time ->test multiple applied field spectra
 - Complete our long-standing proposal in KSTAR to determine the dependence of the isolated NTV torque profile on plasma collisionality
 - Use SMBI to maximize v^* variation in a unique way with the IPS
 - Compare this directly to past NSTX XPs, and new a joint NSTX-U experiment (NSTX-U XP1517 Sabbagh, et al.) as part of our international collaboration
 - Use an innovative technique to measure the NTV offset rotation on KSTAR for the first time

NSTX-U XP1517: Neoclassical toroidal viscosity at reduced collisionality "on deck" as joint experiment

Motivation

- Experimentally, the dependence of neoclassical toroidal viscosity (NTV) at low collisionality needs further study
- Understanding important for NSTX-U V_φ control, other tokamaks, future devices

Goals / Approach

- Examine the dependence of NTV on ion collisionality
 - expected to increase with decreasing v_i from present experiments, and theory
- Determine if superbanana plateau increase of NTV depends on v_i
- Operate with pre-programmed n = 2, 3 applied fields for V_{ϕ} feedback control testing at reduced v_i

Addresses

- NSTX Milestones R(15-3), closed-loop rotation control with 3D fields
- Joint experiment with KSTAR

<u>NTV strength varies with plasma</u> <u>collisionality</u> ν, δB², rotation

KSTAR experiment to be compared to experiments on NSTX/NSTX-U, part of our international collaboration

n = 3 coil configuration

n = 2 coil configuration

(S.A. Sabbagh, R.E. Bell, T.E. Evans, et al., IAEA FEC 2014 paper EX/1-04)

• Utilize technique similar to pioneering NSTX experiments, most recent validated analysis, using full Shaing theory

<u>KSTAR In-Vessel Control Coil (IVCC) + new power</u> <u>supply in 2015 enabled this experiment</u>

<u>KSTAR IVCC, vessel, sensors</u> (VALEN model)

- New high bandwidth power supply (IPS) for 2015
 - 4 SPAs for 3D field control; 1 SPA for n = 0 control
 - Each SPA can deliver 5 kA current (~ coil rating); 500V
 - DC to 1 kHz bandwidth
 - Can run steady-state
 - PCS control
 - Physics / engineering design strongly guided by Columbia U. / PPPL collaboration

KSTAR IVCC and the IPS: Subset of the patch panels set up for 2015

<u>MP 2015-05-23-001: Isolation of NTV torque profile:</u> <u>Brief summary</u>

- 20 "clean" shots with ~ 20s pulse duration taken in total
 - Gives 20 x 9 x 2 = 360 opportunities to measure the isolated NTV torque profile
 - Rotating MHD not apparent, so resonant braking by modes not an issue
 - Could be the most comprehensive NTV database still, we almost, but did not fully complete shot list (due to time constraint)
 - Data / analysis could compete for an IAEA 2016 oral presentation
- Significant variation of key parameters
 - □ ($\delta B_{3D}/B$), q₉₅ (from 5.0 8.2), collisionality (T_i altered significantly), V_φ □ Six 3D field spectra run (n = 2 and n = 1 pitch-aligned/non-pitch-aligned)
- Key diagnostics with some pleasant (significant) surprises!
 CES (absolutely required); also MSE and Thomson available

MP2014-05-02-007 Isolation of NTV torque profile, plasma collisionality and offset rotation: shot plan

	Task Number		f Shots	
1) Use KSTAR's new IPS power supply to perform an isolated measurement of the NTV torque profile				
	(Target: Bt = 2.0T → 13300), 13300 (INCREASE Bt = 2.6T), 13300 (DECREASE Bt = 1.6T); MXD-121C patch panel)			
	A) Generate H-mode target plasma at $Bt = 2.6T$ (reload shot 13300)	\uparrow	1	
	B) Reload 13308 (increasing IVCC steps, separate spectra) run at Bt = 2.6		1	
	Reload 13299 (decreasing IVCC steps, separate spectra) run at Bt = 2.6 1.7 T (2 sh		ots 1	
	D) Reload 13303 (increasing IVCC steps, <u>combined</u> spectra) run at Bt = 2.6	/ only)	1	
	E) Reload 13304 (decreasing IVCC steps, <u>combined</u> spectra) run at Bt = 2.6		1	
	(With Bt = 2.6T, GO TO step 2 first, then: F) Repeat steps A) – E) with $B_T = 1.6T$	F	5	
2) Determine the dependence of the isolated NTV torque profile on plasma collisionality, using SMBI			Not	
/	(use target plasma established from above step)	/	needed	
	A) Reload 13305, (set Bt = $2.6T$) use divertor gas puffing to increase density		1	
	B) Reload 13305, (set Bt = 2.6T) but move SMBI timing back to 120 ms before th	e IVCC pulse	1	
	C) Repeat steps (2A) and (2B) at Bt = 2.0T and 1.5T \leftarrow 1.7 T		4	
(NOTE: These shots will have CONSTANT IVCC current step levels determined by step (1C) above; also				
rerun steps (1D and 1E) with CONSTANT IVCC current step levels, but at a different IVCC current value)				
3) Use an innovative technique to measure the NTV offset rotation on KSTAR for the first time				
0) <u>0</u>	A) Generate control shot that will start up with OH and ECH only (targets: 13379	13/12)	1	
	R) Control shot using specific ECH and NBL waveforms, no 3D applied field	10412)	1	
no to	C) Very 2D applied field (one IVCC level per abot is expected) UCC	ourrent first	י ס	
in)			ۍ 	

(r eı tir ru

V1 6

<u>MP2014-05-02-007</u> Isolation of NTV torque profile: <u>Considerations for run (illustration of SMBI + 3D field)</u>

- Setting up varied 3D field spectra (MXD-121C patch panel)

 - □ Vary the spectrum in each group of steps
 - Take shots with combined non-resonant spectra
- Varying collisionality
 - B_T, I_p variation; natural density evolution
 SMBI (cold); divertor gas puffing
- NTV offset rotation target plasma
 2015 shots: 13379, 13412

dB/dt from one of the new (2015) RWM sensors

Still to do (in red)

Accomplished

 $(q_{95} \sim 5.0, 6.2, 8.2)$

SMBI delivery successful, increased small mode, then 3D field applied 40ms later apparently leads to mode lock

MXD-121C patch panel chosen to allow wide investigation of 3D field spectra, including relative alignment to 2D field pitch

Non-pitch aligned has <u>lower</u> Br n = 1 field overall, broad region ~ 10G

TAR MP2015-05-23-001 Isolation of NTV - ν* variation, offset 10/6/15 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y. Jeon, (NFRI) et al. 10

NTV effect has been successfully isolated with the new IPS!

- Increasing field strength = stronger NTV
 - Shown by change in |dVp/dt|
 - |dVp/dt| changes vs. R <u>NTV PROFILE</u>
- Altered field spectrum alters NTV
- "Non-pitch-aligned" n = 1 field apparently provides stronger braking (!)

Shots with COMBINED non-resonant field spectra (n = 2 + n = 1 non-pitch-aligned)

Vary applied field magnitude fixed combined spectrum (n = 2 midplane; n = 1 non-pitch-aligned: → ALL in one shot if possible)

Take second shot, changing the order of the IVCC current steps

Isolate NTV torque profile: collisionality scan waveforms n = 2 mid, n = 1, 0 deg (non-pitch-align (4.5s duration) n = 2 mid, n = 1, 180 deg (pitch align) (4.5s duration) n = 2 mid, n = 1, 0 deg (non-pitch-align) (4.5s duration)

- Shots with COMBINED non-resonant field spectra (n = 2 + n = 1 non-pitchaligned)
 - Varied collisionality through director gas puffing
 - Varied profiles with H-L transitions

60.0

40:0

- Some H-L transitions can take NTV before, and sometimes after transition
- Again, "non-pitch-aligned" n = 1 field apparently provides stronger braking

3:0

transition

9:0

12.0

15.0

6:0

- before, and sometimes after transition
- Generally effect of gas puff is noticeable in NTV braking (need further analysis)

P2015-05-23-001 Isolation of NTV - v* variation, offset 10/6/15 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y. Jeon, (NFRI) et al. 17

3:0

6:0

transitions

30:0

(time did not allow us to run this)

l_p

l_p

Schematic of approach to measure NTV offset rotation profile

Measure $\omega_{\phi}(R)$ without RF

- Determine NTV offset velocity profile using an innovative approach with ECH and NBI
 - Also, to be compared to an experiment proposed on NSTX-U (2016)
- Run with two 3D field spectra and compare
 - Run n = 2 field at midplane
 - Run n = 1 non-pitch-aligned off-midplane
- Target plasmas
 - 2015 shots: 13379, 13412

MP2015-05-23-001 Isolation of NTV - v* variation, offset 10/6/15 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y. Jeon, (NFRI) et al. 18

Brief summary of "control room" observations and hypotheses

- KSTAR NTV as observed in these new, isolated NTV shots
 - Initial observation: strong resonant MHD modes have been avoided
 - Initial observation: pitch aligned 3D field does not have stronger NTV
 - Observation indicates no strong amplification due to kink response
 - Observation: NTV profile is global, non-resonant, no huge variations
 - Initial observation: NTV profile of combined spectra might be understood by simple superposition of applied field (analysis needed)
 - Working Hypothesis: NTV depends primarily on |δB|, ν, not on resonant effects, particulars of resonances, or alignment with 2D field
- Experience from NSTX (theory/experiment verification 10 years old!)
 - Non-resonant NTV is robust, not strongly dependent on profile details
 - No strong resonant effects unless strong resonant MHD is present

Essential plan to complete this data was (nearly) completed! Great data! Further detailed comparison to past dedicated NSTX, and new joint NSTX-U NTV experiments, will yield further understanding of NTV in tokamaks

<u>MP 2015-05-23-001: Isolation of NTV torque profile –</u> <u>Diagnostics</u>

- Required diagnostics / capabilities
 - Equilibrium magnetics, ECH, full NBI power
 - IVCC coils in Mixed 1/2/1C patch panel (n = 2 (mid), n = 1 (top/bot))
 - Toroidal rotation measurement (CES, X-ray crystal)
 - Ion temperature (CES)
 - Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
 - 🗖 SMBI (cold)
 - 🗸 🗆 ECE, ECEI

Acquired. Density profile will help provide a reasonably accurate NTV profile calculation

- Desired diagnostics / capabilities
 - Thomson scattering (T_e, n_e); MSE <</p>
 - Interferometer (line avg. n_e evolution)

MSE acquired for all shots taken

- Locked mode detectors (all positions)
- fast camera

Supporting Slides Follow

Resonant effects, hypothesized in some publications, are not observed in NSTX – due to finite gryo-radius/banana width

n = 3 coil configuration

Scale factor $((dL/dt)/T_{NTV}) = 0.6$ (for case shown above) – O(1) agreement

NO plasma amplification of 3D field in these calculations