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Why short wavelength lasers?
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Able to directly photoionize Focal spot & � High critical density

Despite short �, lasers maintain attractive beam properties
Several challenges to overcome:

Lack of refractive optics; reflective optics have reflectivities < 70%

Propagation in vacuum complicates experiments
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Atomic states in a plasma

Densities of atomic states in vector ~

N evolve through rate matrix:
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Typical collisional rate has the form
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Atomic states particularly important for:

Closure through equation of state for hydrodynamics

Spectroscopic diagnostics

Steady state may reduce to a thermodynamic relation, such as Local
Thermodynamic Equilibrium (LTE), with:
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Deviations from LTE
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[1] V. Aslanyan, G. J. Tallents, Phys. Plasmas 21, 062702 (2014)
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Transient departure from steady state
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Quantum e↵ects: Fermi-Dirac distribution
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Deviations from Maxwell-Boltzmann occur when Te is high and ne is low
Atomic models require many evaluations of non-analytic integrals:
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A double integral must now be evaluated due to the Pauli exclusion
principle
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E↵ects of degeneracy on plasma properties
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Evaluation of multiple integrals is ideally suited to SIMD paradigm of
GPUs. Initial results show > 10⇥ speedup over single CPU.

[2] V. Aslanyan, G. J. Tallents, Phys. Rev. E 91, 063106 (2015)
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Going to 1D: bleaching waves

Laser photons: 26.5 eV Helium ionization energy: 24.6 eV
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Absorption stops when all atoms are in 1+ charge state

Collective phenomenon referred to as opacity “bleaching” wave
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Going to 1D: bleaching waves

Laser photons: 26.5 eV Helium ionization energy: 24.6 eV

100 200 300 400 500

Length along pulse [mm]

0.0

0.4⇥ 1010

0.8⇥ 1010

1.2⇥ 1010

1.6⇥ 1010

2⇥ 1010

In
te

n
si

ty
[W

cm
�
2 ]

1 ns

0.0 0.5 1.0 1.5 2.0

Depth [mm]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
a
li

ze
d


B
F

1 ns

Laser energy is absorbed by strong photoionization

Absorption stops when all atoms are in 1+ charge state

Collective phenomenon referred to as opacity “bleaching” wave



Introduction Collisional-radiative models Capillary discharge laser Experimental results Conclusions

Going to 1D: bleaching waves
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Going to 1D: bleaching waves
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Going to 1D: bleaching waves
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Going to 1D: bleaching waves

Laser photons: 26.5 eV Helium ionization energy: 24.6 eV

100 200 300 400 500

Length along pulse [mm]

0.0

2⇥ 1010

4⇥ 1010

6⇥ 1010

8⇥ 1010

1011

In
te

n
si

ty
[W

cm
�
2 ]

0 ns

0.0 0.5 1.0 1.5 2.0

Depth [mm]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
a
li

ze
d


B
F

0 ns

Laser energy is absorbed by strong photoionization

Absorption stops when all atoms are in 1+ charge state

Collective phenomenon referred to as opacity “bleaching” wave



Introduction Collisional-radiative models Capillary discharge laser Experimental results Conclusions

Going to 1D: bleaching waves
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Going to 1D: bleaching waves

Laser photons: 26.5 eV Helium ionization energy: 24.6 eV
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Going to 1D: bleaching waves
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Going to 1D: bleaching waves
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Going to 1D: bleaching waves

Laser photons: 26.5 eV Helium ionization energy: 24.6 eV
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A possible experiment to observe bleaching waves

Attenuation of radiation
is a strong function of
intensity
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Capillary discharge laser - operating principle

Lightly ionized 
argon plasma

j×B

Current
discharge

B

Laser
emission

Cycle of a single laser shot in a capillary with 2 mm inner diameter, 200 mm
length. Typical peak current rises to ⇠ 18 kA in 20 ns.

Electrically pumped laser allows:

Compact size - tabletop

High repetition rate - up to 10 Hz
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Capillary discharge laser at CSU
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Pulse energy characterization
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experimental
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EUV ablation and transmission experiments

[3] CCD

Filter
M2

M1
Shutter

Inline
detector

Schematic of transmission experiment

Combination of beam shape and plasma
modelling required to match experiments

[3] A. K. Rossall, V. Aslanyan, et al. Phys. Rev. Applied 3, 064013 (2015)
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Ablation profiles

Parylene-N 1028 nm

Parylene-N 429 nm

Aluminum 1200 nm

Ablated profiles di�cult to describe analytically due to broken symmetry
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Fresnel di↵raction profiles
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Comparison of di↵raction results to target images

Appropriate intensity contours provide reasonably good fits to micrographs
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Hydrodynamic simulations
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Hydrodynamic simulations
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Hydrodynamic simulations
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Hydrodynamic simulations
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Conclusions from collisional-radiative modelling

LTE is a useful tool for closure in hydrodynamic simulations and holds
under many conditions

Photoionization can drive plasma out of LTE, especially due to large
cross section for EUV radiation

Strong photoionizing radiation can drive a non-equilibrium opacity
bleaching wave, which may be detected through modification of the
beam profile



Introduction Collisional-radiative models Capillary discharge laser Experimental results Conclusions

Conclusions from experimental studies

A compact EUV laser has been characterized and used for the first
time to perform experiments

Its beam shape at focus has been calculated through Fresnel
di↵raction integrals and matched to experiments

Hydrodynamic simulations have been benchmarked through
microscopy (optical and AFM)


