

NSTX-U Error Field Correction Update

C. E. Myers, S. P. Gerhardt, J. E. Menard, etc.

NSTX-U Monday Physics Meeting April 11, 2016

Recap from late February...

- XMP-140: PF5-proportional EFC
 - 700 kA ohmic target
 - Apply different phases and amplitudes of *n*=1 EFC proportional to main vertical field (PF5)
 - Primary diagnostic = shot duration
- Results
 - Best phase of 315°
 - Best amplitude of 0.086 A/A, which translates to $I_{\rm RWM} \sim 600$ A at $I_{\rm p} \sim 700$ kA
- Path forward
 - Use this *n*=1 EFC prescription in all subsequent shots (until a better one is found)
 - Try again at a different plasma current
 - Verify with a proper compass scan (XP-1506)

Recap from late February...

- XMP-140: PF5-proportional EFC
 - 700 kA ohmic target
 - Apply different phases and amplitudes of *n*=1 EFC proportional to main vertical field (PF5)
 - Primary diagnostic = shot duration
- Results
 - Best phase of 315°
 - Best amplitude of 0.086 A/A, which translates to $I_{\rm RWM} \sim 600$ A at $I_{\rm p} \sim 700$ kA
- Path forward
 - Use this *n*=1 EFC prescription in all subsequent shots (until a better one is found)
 - Try again at a different plasma current
 - Verify with a proper compass scan (XP-1506)

XMP-140 in 900 kA ohmic plasmas

- XMP-140: PF5-proportional EFC
 - Try again with a 900 kA ohmic target
 - Apply different phases and amplitudes of *n*=1 EFC proportional to main vertical field (PF5)
 - Primary diagnostic = shot duration
- Results
 - Amplitude scan (not shown) largely supports the previous optimum of 0.086 A/A
 - Some indications in the phase scan that the optimum phase could be closer to 0°
 - What is different: PF5/3 ratio? Weather?
- Path forward
 - Retain the original n=1 EFC prescription
 - Verify with a proper compass scan (XP-1506)

XP-1506 compass scan (finally)

- Use 650 kA ,1 MW sawtoothing L-mode fiducial
- Apply ramping n=1 error field at various phases starting at 700 ms

XP-1506 compass scan (finally)

- XMP-1506: *n*=1 compass scan
 - Goal is to determine optimum *n*=1 EFC as maximum 'distance' from locking
 - Primary diagnostic = RWM sensors
 - Apply density scaling of $(n_e/n_{e,avg})^{-0.98}$ as per Menard et al. [NF 2010]
- Results
 - Well-resolved circle with amplitude of $I_{\rm RWM} \sim 610$ A and phase $\sim 15^{\circ}$
 - Supports the 900 kA phase results
- Path forward
 - Use these results as the 'standard' prescription for PF5-proportional EFC
 - This new prescription was in use for Shots 204112 and 204118, which are the best NSTX-U H-modes to date

XMP-146: Preliminary n=2,3 EFC

- NSTX used feed-forward n=3 EFC to achieve optimum performance
- Measurements of the PF5 coils indicate that n=2,3 are likely to be important in NSTX-U
- Use 2 second L-mode capability for scoping study of n=2 EFC \rightarrow 250 ms bins
- Asymmetry in rotation is observed with $n=2 \rightarrow rtVphi$ diagnostic (M. Podesta)

