Modeling of Edge Localized Modes in KSTAR Tokamak Using the Extended MHD NIMROD Code

Alexei Pankin, Jake King, and Scott Kruger

Tech-X Corporation, Boulder, CO 80303, USA

Minwoo Kim, M.J. Choi, J. Lee, J.E. Lee, G.S. Yun, W. Lee Pohang University of Science and Technology, Pohang, Korea

H.K. Park

Ulsan National Institute of Science Technology, Ulsan, Korea

Previous Modeling of ELMs Using NIMROD

- Linear and nonlinear ELM dynamics in DIII-D have intensively investigated using the NIMROD code 10 years ago [C.Sovinec IAEA 2006; A. Pankin PPCF 2008]
- Valuable results were obtained
 - Two-fluid and FLR effects are found to stabilize large toroidal mode numbers in linear and nonlinear simulations

Two-fluid and single-fluid linear growthrate spectrum for toroidal wavenumbers $0 \le n \le 42$ obtained with the 20×120 mesh of biquintic elements Dissipation coefficients of χ_{II} =1.5×10⁷ m²/s, χ_{\perp} =1.5 m²/s, and v=25 m²/s

Poloidal mesh of 20×120 with biquintic finite elements

Perturbations do not extend over entire outboard region like in single fluid simulations. Three groups of perturbations: one near separatrix, another on outboard side above midplane, and the third at the top of separatrix

2.86E+19 2.47E+19 2.08E+19 1.69E+19

1 3E+19

Lessons Learned from Previous Studies

- Physics results strongly depend on the experimental profiles in the plasma edge region
 - This includes the pressure profiles in the pedestal and SOL regions
 - ELM is sensitive to both the resistivity (electron temperature) inside the LCFS (e.g. resistive destabilization) and the resistivity and density profiles outside LCFS (these profiles determine the degree of a vacuum-like response)
 - High quality measurement of plasma profiles are critical
- Resolution requirements with the two-fluid electric field and gyroviscosity are found to be very stringent
 - Convergence of ELM cases is challenging
 - Poloidal resolution
 - Solver issues

Current Capabilities in NIMROD Relevant to ELMs

- Physics basis [C.Sovinec JCP 2004]
 - Complete Braginskii formulation is implemented
 - Hall term, gyroviscosity, ion parallel stress tensor [C.Sovinec JCP 2010]
 - Dissipation terms: resistivity, viscosity, thermal and particle diffusivities
 - Choice of closures: Braginskii, kinetic PIC [C. Kim PoP 2008], and continuum electron and ion drift-kinetic [E. Held PoP 2015]
 - Options to include neoclassical effects and ion orbit losses
 - NIMEQ [Howell CPC 2014] and FGNIMEQ [to be submitted] Grad-Shafranov solvers for pre-processing the experimental data
 - Modeling of neutrals is being implemented [Shumlak, U-Wash]
- Code development and performance improvements
 - Improvements of preconditioning options
 - Convergence of interchange modes [C. Sovinec to be submitted to JCP]
 - Scaling up to 65,000 cores
 - Development of selection of global and local upwinding schemes
 - Implementation of parallel hdf5 IO
- Improvement of visualization capabilities
- Verification and validation studies

Verification of NIMROD ELM Computations

TECH->

High resolution ECEI measurements in KSTAR can be used for understanding of ELM dynamics

• KSTAR discharge 7328: *B*_T=2.25 T, *I*_p=750kA, *P*_{NBI}=3MW, q₉₅=5

- Very slowly growing modes are observed between large type I ELM crashes
- -0.02 Mode number changes as pedestal builds up
 - Typically, the toroidal mode number decreases with time
 - During large ELM crash these modes disappear from the region of ECEI observation and reappear after ELM crash

Interpretation of ELM observations

- The modes observed in the KSTAR ECEI measurements are likely to be nonlinear saturated modes that might be related to triggering of ELM crashes
 - ELM crashes observed at KSTAR are typically triggered by n order of 12
- Linear stability analysis using ideal stability codes
 - n=5-11 modes are found in the range of experimental density and temperature measurements

- Ballooning stability boundary is shown. Parallel current densities that make the peeling modes unstable are found in the range of 135-150 A/cm², which is well outside experimental error bars
- n=5 and n=9 toroidal mode numbers that are close to the experimentally observed modes are marked on the diagram

Verification of BOUT++ and NIMROD

- Comparable resistivity in NIMROD and BOUT++ (S=10⁸)
- BOUT++ defines resistivity differently in this simulations
- Three-field model in BOUT++ does not evolve density w/gs11-t00-073 Linear growth rate analysis separate from pressure $\tau_A = 2.04e-7$ (s)
- Diamagnetic effects are included in BOUT++ and ignored in these NIMROD simulations
- Inclusion of drift effects in NIMROD result in a stronger than in BOUT++
 mode stabilization

Toroidal mode number *n*

Linear Extended MHD NIMROD Analysis

- Equilibria generated for BOUT++ stability analysis are used in the NIMROD extended MHD studies
- Hierarchy of extended MHD models are considered

• NIMROD simulations uses is 72x512 grid with polynomial degree of 6

Linear Extended MHD NIMROD Analysis

- In resistive MHD simulations
 - All equilibria are found unstable with relatively weakly growing modes
 - Spectra shifted towards higher toroidal mode numbers comparing to BOUT++ analysis
- Inclusion of gyro-viscosity and parallel viscosity result in significant stabilization of all modes
 - Low n-modes are found completely stable
- Adding two-fluid effects destabilize all modes
 - Decoupling between electrons and ions is expected to be destabilizing
- Two-fluid two-temperature MHD
 - Modes with high n that might be related to ITG modes become unstable

Nonlinear Simulation of KSTAR using NIMROD

- Simulation utilizes high resolution grid
 - 72x512 with pd=5 and 6 (compare 20x120 with pd=4 in ELM simulations ten years ago)
 - S=10⁸ and Prandtl number of 0.1
 - No enhanced viscosity, perpendicular thermal diffusivity or particle diffusivity relative to Braginskii
 - Utilizes over 8,000 core on Edison
- NIMROD has option to switch physics models during restart
 - Simulation is started with 1fl model and continued with 2fl model

Nonlinear Simulation of KSTAR using NIMROD

Magnetic energy as function of time during linear and early non-linear stages

1fl

2fl

Nonlinear Simulation of KSTAR using NIMROE

- ELM starts to saturate
- Dominant mode numbers are in the range from n=17 to n=21
- Direct cascade is found important
 - Modes in range from n=34 to n=42 are driven
 - It is important to include at least second harmonics in simulations
 - Results are found to be different comparing to M3D modeling of ELMs in DIII-D [L. Sugiyama Phys. Scr. 2012]

Magnetic Tangle Developed

- Magnetic perturbations become large enough and magnetic tangle developed
 - Magnetic geometry of diverted X-point makes the plasma susceptible to reconnection
 - Hot plasma inside the LCFS can connect to the plasma facing components

Plasma Profiles in SOL are Important

SOL profiles are important because

- These profiles allow realistic resistivity inside and outside LCFS
- SOL current profiles can help to avoid unphysical discontinuities
- Details are important for two-fluid, FLR and closures responses

NIMROD resolves Grad-Shafranov solver to selfconsistent currents in open flux region

NIMROD domain includes:

- Closed-flux region
- Scrape-off layer (SOL)
- Current-free region

NIMROD for SOL Transport Studies

- Inclusion of SOL profiles in NIMROD extends the code capabilities for transport studies in SOL
 - $J \times B = \nabla p$ force balance in extended MHD does not imply steady states
 - SOL flows due to FLR, two-fluid, and closures responses [A. Aydemir NF 2009; S. Pamela PPCF 2010]
- NIMROD studies to investigate these flows and their effects on ELM dynamics are initiated
 - Braginskii and DKE-closures for axisymetric transport modeling
 - NUBEAM and TORIC in TRANSP and ONETWO for sources
- Multiple ELM cycles can simulated in NIMROD

Flow Comparison for Discharges with Different Plasma Currents

Two-fluid and FLR effect increase these differences between poloidal and toroidal flows

 Use of local and global upwinding schemes helps to resolve numerical issues in SOL region

Flow Comparison for Discharges with Different Plasma Currents

- Toroidal and poloidal velo are smaller in the discharges with larger plasma currents
 - Effect is likely related to different resistivity profiles
 - Discharges with larger plasma currents have larger temperatures in H-mode pedestal region
 - Neoclassical effects are not included in these simulations yet

Summary

- NIMROD capabilities for ELM modeling are presented
 - FGNIMEQ tool for resolve Grad-Shafranov equilibria on NIMROD grid
 - Plasma profiles and plasma currents are extended to SOL
 - MEUDAS benchmark case is extended to study collisionality effects
 - Most unstable mode numbers shifted towards lower n for cases with higher temperatures due to FLR effects
 - High-n mode stabilized due to FLR effects
 - Equilibrium evolved in extended MHD code result in large SOL flows
 - Resistivity gradient is found to have little effect on SOL flows
 - Two-fluid effects are found important both for toroidal and poloidal flows
 - Two-fluid effects enhance the SOL poloidal flows by 1000x compared to poloidal flows computed using resistive MHD
 - SOL flows decrease with the plasma current
 - SOL flows can significantly change the ELM dynamics
 - New closures are being developed and tested
- •KSTAR ELM modeling results are presented
 - Two-fluid MHD is important for linear and nonlinear dynamics
 - Direct cascade is found important
 - Magnetic tangle developed

MEUDAS Benchmark is Extended to Study Collisionality Effects

- Equilibrium is not changed
- This includes the pressure profiles and bootstrap current
- Density and temperature profiles are scaled up and down
- FLR effects are expected to be larges for the case with smaller density and larger temperature
- Most unstable mode numbers shifted towards lower n for cases with higher temperatures
- High-n mode stabilized due to FLR effects

FGNIMEQ Development

- Mapping issues between experimental equilibria and NIMROD grid are addressed
 - Developed from NIMEQ solver [Howell CPC 2014] and FLUXGRID equilibrium mapper
 - Allow using low resolution experimental equilibrium reconstruction in NIMROD for edge problems

Two-fluid and FLR Effects

