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Previous Modeling of ELMs Using NIMROD
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Dissipation coefficients of 
cII=1.5¥107 m2/s, c^=1.5 m2/s, 

and n=25 m2/s

Poloidal mesh of 20¥120 with 
biquintic finite elements

Perturbations do not extend over 
entire outboard region like in single 
fluid simulations. Three groups of 
perturbations: one near separatrix, 
another on outboard side above 
midplane, and the third at the top 
of separatrix

 Linear and nonlinear ELM dynamics in DIII-D have intensively 

investigated using the NIMROD code 10 years ago [C.Sovinec 

IAEA 2006; A. Pankin PPCF 2008] 
 Valuable results were obtained

– Two-fluid and FLR effects are found to stabilize large toroidal mode 
numbers in linear and nonlinear simulations
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Lessons Learned from Previous Studies

 Physics results strongly depend on the experimental profiles in the 
plasma edge region

 This includes the pressure profiles in the pedestal and SOL regions

 ELM is sensi tive to both the resistivity (electron temperature) inside 
the LCFS (e.g. resistive destabilization) and the resistivity and 
density profiles outside LCFS (these profiles determine the degree 
of a vacuum-like response)

 High quality measurement of plasma profiles are critical

 Resolution requirements with the two-fluid electric field and 
gyroviscosity are found to be very stringent

 Convergence of ELM cases is challenging 

 Poloidal resolution

 Solver issues
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Current Capabilities in NIMROD Relevant to ELMs

 Physics basis [C.Sovinec JCP 2004]
 Complete Braginskii formulation is implemented

 Hall term, gyroviscosity, ion parallel stress tensor [C.Sovinec JCP 2010]
 Dissipation terms: resistivity, viscosity, thermal and particle diffusivities

 Choice of closures: Braginskii, kinetic PIC [C. Kim PoP 2008], and 
continuum electron and ion drift-kinetic [E. Held PoP 2015]

 Options to include neoclassical effects and ion orbit losses
 NIMEQ [Howell CPC 2014]  and FGNIMEQ [to be submitted] Grad-

Shafranov solvers for pre-processing the experimental data 
 Modeling of neutrals is being implemented [Shumlak, U-Wash]

 Code development and performance improvements
 Improvements of preconditioning options
 Convergence of interchange modes [C. Sovinec to be submitted to 

JCP]
 Scaling up to 65,000 cores
 Development of selection of global and local upwinding schemes
 Implementation of parallel hdf5 IO 

 Improvement of visualization capabilities
 Verification and validation studies
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Verification of NIMROD ELM Computations

 The NIMROD, GATO, and ELITE code have 
been benchmarked [B. Burke PoP 2010]

 NIMROD results are compared with ELITE and 
M3D-C1 results for the MEUDAS benchmark case 
[N. Ferarro PoP 2010; J.King submitted to NF]

 Based on JT-60U equilibrium
 Resistive, two-fluid, and gyroviscous effects 

are compared
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High resolution ECEI measurements in KSTAR can 
be used for understanding of ELM dynamics

 KSTAR discharge 7328: BT=2.25 T, Ip=750kA, PNBI=3MW, q95=5 

 Very slowly growing modes are observed 
between large type I ELM crashes

 Mode number changes as pedestal builds 
up

 Typically, the toroidal mode number 
decreases with time

 During large ELM crash these modes 
disappear from the region of ECEI 
observation and reappear after ELM crash

EFIT at 4.36 sec            ECEI at 4.36 sec   
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Interpretation of ELM observations

 The modes observed in the KSTAR ECEI measurements are likely to be 

nonlinear saturated modes that might be related to triggering of ELM 

crashes
– ELM crashes observed at KSTAR are typically triggered by n order of 12

 Linear stability analysis using ideal stability codes
– n=5-11 modes are found in the range of experimental density and 

temperature measurements  

 Ballooning stability boundary is 

shown. Parallel current densities 

that make the peeling modes 

unstable are found in the range 

of 135-150 A/cm2, which is well 

outside experimental error bars 

 n=5 and n=9 toroidal mode 

numbers that are close to the 

experimentally observed modes 

are marked on the diagram 
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Verification of BOUT++ and NIMROD

 Comparable resistivity in NIMROD and BOUT++ (S=108)

 BOUT++ defines resistivity differently in this simulations 

 Three-field model in BOUT++ 

does not evolve density 

separate from pressure

 Diamagnetic effects are 

included in BOUT++ and 

ignored in these NIMROD 

simulations 

 Inclusion of drift effects 

in NIMROD result in a 

stronger than in BOUT++ 

mode stabilization
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Linear Extended MHD NIMROD Analysis

 Equilibria generated for BOUT++ stability analysis are used in the NIMROD extended MHD 

studies

 Hierarchy of extended MHD models are considered

 Resistive MHD 

– Lundquist number S=108

– Spitzer resistivity is used

– No parallel viscosity or gyro-viscosity

– No particle diffusivity, 
hyper-diffusivity or 
hyper-resistivity

 Resistive MHD with drifts

– Parallel viscosity and 
gyro-viscosity are enabled

– Particle diffusivity is enabled 

– No hyper-diffusivity

 Two-fluid MHD

 Two-fluid two-temperature MHD

 NIMROD simulations uses is 72x512 grid with polynomial degree of 6
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Linear Extended MHD NIMROD Analysis

 In resistive MHD simulations

– All equilibria are found unstable with relatively weakly growing 
modes

– Spectra shifted towards higher toroidal mode numbers comparing 
to BOUT++ analysis

 Inclusion of gyro-viscosity and parallel viscosity result in 

significant stabilization of all modes

– Low n-modes are found completely stable 

 Adding two-fluid effects destabilize all modes

– Decoupling between electrons and ions is expected to be 
destabilizing 

 Two-fluid two-temperature MHD

– Modes with high n that might be related to ITG modes become 
unstable
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Nonlinear Simulation of KSTAR using NIMROD

 Simulation utilizes high resolution grid

 72x512 with pd=5 and 6 (compare 20x120 with pd=4 in ELM 
simulations ten years ago)

 S=108 and Prandtl number of 0.1 

 No enhanced viscosity, perpendicular thermal diffusivity or 
particle diffusivity relative to Braginskii

 Utilizes over 8,000 core on Edison

 NIMROD has option to switch physics models during 
restart

 Simulation is started with 1fl model and continued with 
2fl model 
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Nonlinear Simulation of KSTAR using NIMROD

Magnetic energy as function of time during linear and 
early non-linear stages 

1fl 2fl



 PPPL Seminar, Princeton, April 11, 2016

Nonlinear Simulation of KSTAR using NIMROD

● ELM starts to saturate

● Dominant mode
numbers are in the range 
from n=17 to n=21

● Direct cascade is found 
important

● Modes in range from n=34 
to n=42 are 
driven

● It is important to 
include at least 
second harmonics 
in simulations

● Results are found to  be 
different comparing to 
M3D modeling of ELMs in 
DIII-D 
[L. Sugiyama Phys. Scr. 
2012]



 PPPL Seminar, Princeton, April 11, 2016

Magnetic Tangle Developed 
● Magnetic perturbations  become large enough and 

magnetic tangle developed

● Magnetic 
geometry of 
diverted X-point 
makes the 
plasma 
susceptible to 
reconnection 

● Hot plasma 
inside the LCFS 
can connect to 
the plasma 
facing 
components
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Plasma Profiles in SOL are Important

SOL profiles are important because 

● These profiles allow realistic resistivity inside and outslde LCFS
● SOL current profiles can help to avoid unphysical discontinuities
● Details are important 

for two-fluid, FLR and 
closures responses

NIMROD resolves Grad-
Shafranov solver to self-
consistent currents in open 
flux region 

NIMROD domain includes: 

● Closed-flux region
● Scrape-off layer (SOL)
● Current-free region
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NIMROD for SOL Transport Studies

● Inclusion of SOL profiles in NIMROD extends the code 
capabilities for transport studies in SOL

●                      force balance in extended MHD does not imply 
steady states

● SOL flows due to FLR, two-fluid, and closures responses 
[A. Aydemir NF 2009; S. Pamela PPCF 2010]

● NIMROD studies to investigate these flows and their 
effects on ELM dynamics are initiated

● Braginskii and DKE-closures for axisymetric transport 
modeling

● NUBEAM and TORIC in TRANSP and ONETWO for sources

● Multiple ELM cycles can simulated in NIMROD

J×B=∇ p
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Two-fluid and FLR effect increase these differences between 
poloidal and toroidal flows

–Use of local and global upwinding schemes helps to resolve 
numerical issues in SOL region

132016
t=2.0∙10-4 sec
w 2fl +gyroviscosity

Flow Comparison for Discharges with 
Different Plasma Currents

132017
t=2.0∙10-3 sec
with 2fl+gyroviscosity

132014
t=2.0∙10-4 sec
w 2fl +gyroviscosity

132017
t=2.0∙10-4 sec
w 2fl +gyroviscosity
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Toroidal and poloidal velocities 
are smaller 
in the discharges with 
larger plasma currents
– Effect is likely related 

to different resistivity 
profiles

– Discharges with larger
plasma currents have 
larger temperatures in 
H-mode pedestal region

– Neoclassical effects are 
not included in these 
simulations yet

Flow Comparison for Discharges with 
Different Plasma Currents
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Summary

• NIMROD capabilities for ELM modeling are presented
– FGNIMEQ tool for resolve Grad-Shafranov equilibria on NIMROD grid
– Plasma profiles and plasma currents are extended to SOL
– MEUDAS benchmark case is extended to study    collisionality effects
• Most unstable mode numbers shifted towards lower n for  cases with 

higher temperatures due to FLR effects
• High-n mode stabilized due to FLR effects

– Equilibrium evolved in extended MHD code result in large SOL flows
• Resistivity gradient is found to have little effect on SOL flows
• Two-fluid effects are found important both for toroidal and poloidal flows
• Two-fluid effects enhance the SOL poloidal flows by 1000x compared to 

poloidal flows computed using resistive MHD
• SOL flows decrease with the plasma current
• SOL flows can significantly change the ELM dynamics

– New closures are being developed and tested 

•KSTAR ELM modeling results are presented
– Two-fluid MHD is important for linear and nonlinear dynamics
– Direct cascade is found important
– Magnetic tangle developed
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MEUDAS Benchmark is Extended to Study Collisionality Effects

3×10
19

m
−3

6×10
19

m
−3

1. 2×10
20

m
−3

 Equilibrium is not changed 
 This includes the pressure profiles and bootstrap current
 Density and temperature profiles are scaled up and down
 FLR effects are expected to be larges for the case with smaller density and 

larger temperature
 Most unstable mode numbers shifted towards lower n for cases 

with higher temperatures
 High-n mode stabilized due to FLR effects 

                                                        [J. King et al to be submitted]
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FGNIMEQ Development
 Mapping issues between experimental equilibria and 

NIMROD grid are addressed

 Developed from 
NIMEQ solver 
[Howell CPC  2014] 
and FLUXGRID 
equilibrium mapper 

 Allow using low 
resolution 
experimental 
equilibrium 
reconstruction in 
NIMROD for edge 
problems

 



 PPPL Seminar, Princeton, April 11, 2016

Two-fluid and FLR Effects
• Analytical estimate of diamagnetic 

stabilization 
[K. V. Roberts and J. B. Taylor, 
PRL 8 (1962)] 
suggests stability at 
w*i ∫ mv/r = 2 gMHD

Observed gMHD@2¥105, 

r @ 0.5 m, q @ 3

• Than, one might expect 
stability at n=m/q of 
order unity

2neBp—¥B

Poloidal component of diamagnetic 
drift velocity and toroidal 

component of flow velocity for the 
n=21 eigenfunction computed with 

two-fluid model

The radial extent of the diamagnetic drift 
is narrower than ELM eigenfunctions, and 
radial localization is known to reduce the 
stabilizing effect of ion diamagnetic drift 
[R. J. Hastie, et al PoP 7 (2000)]


