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* Linear and nonlinear ELM dynamics in DIII-D have intensively
investigated using the NIMROD code 10 years ago [C.Sovinec
IAEA 2006; A. Pankin PPCF 2008]

* Valuable results were obtained

— Two-fluid and FLR effects are found to stabilize large toroidal mode
numbers in linear and nonlinear simulations:
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~ Lessons Learned from Previous Studies

* Physics results strongly depend on the experimental profiles in the
plasma edge region

* This includes the pressure profiles in the pedestal and SOL regions

* ELM is sensitive to both the resistivity (electron temperature) insid
the LCFS (e.g. resistive destabilization) and the resistivity and
density profiles outside LCFS (these profiles determine the degree
of a vacuum-like response)

* High quality measurement of plasma profiles are critical

* Resolution requirements with the two-fluid electric field and
gyroviscosity are found to be very stringent

* Convergence of ELM cases is challenging

* Poloidal resolution
* Solver issues
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 Current Capabilities in NIMROD Relevant to ELMs.

* Physics basis [C.Sovinec JCP 2004]

* Complete Braginskii formulation is implemented
* Hall term, gyroviscosity, ion parallel stress tensor [C.Sovinec JCP 2010]
* Dissipation terms: resistivity, viscosity, thermal and particle diffusivities

* Choice of closures: Braginskii, kinetic PIC [C. Kim PoP 2008], and
continuum electron and ion drift-kinetic [E. Held PoP 2015]
* Options to include neoclassical effects and ion orbit losses

* NIMEQ [Howell CPC 2014] and FGNIMEQ [to be submitted] Grad-
Shafranov solvers for pre-processing the experimental data

* Modeling of neutrals is being implemented [Shumlak, U-Wash]
* Code development and performance improvements
* Improvements of preconditioning options
* Convergence of interchange modes [C. Sovinec to be submitted to
JCP]
* Scaling up to 65,000 cores
* Development of selection of global and local upwinding schemes
* Implementation of parallel hdf5 IO
* Improvement of visualization capabilities

. \(erification and validation studies
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e The NIMROD, GATO, and ELITE code have E N Bl sl
been benchmarked [B. Burke PoP 2010] s

* NIMROD results are compared with ELITE and :
M3D-C1 results for the MEUDAS benchmark case |
[N. Ferarro PoP 2010; J.King submitted to NF] °'}

* Based on JT-60U equilibrium
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* KSTAR discharge 7328: B;=2.25 T, | =750kA, Py;=3MW, q,,=5

EFIT at 4.36 sec ECEI at 4.36 sec
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* Very slowly growing modes are observed
between large type | ELM crashes

4.5

0-02 Mode number changes as pedestal builds

up

* Typically, the toroidal mode number
decreases with time

* During large ELM crash these modes
disappear from the region of ECEI
observation and reappear after ELM crash
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* The modes observed in the KSTAR ECEIl measurements are likely to be
nonlinear saturated modes that might be related to triggering of ELM
crashes

— ELM crashes observed at KSTAR are typically triggered by n order of 12

* Linear stability analysis using ideal stability codes
— n=5-11 modes are found in the range of experimental density and
temperature measurements
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~ Verification of BOUT++ and NIMROD

* Comparable resistivity in NIMROD and BOUT++ (S=108)
 BOUT++ defines resistivity differently in this simulations

* Three-field model in BOUT++
does not evolve density w/ gs11-t00-073 Linear growth rate analysis

separate from pressure 1, =2.04e-7 (s) —e—NIMROD
BOUT, w/o diamagnetic, S=10"7
° Diamagnetic effeCtS are —e—BOUT, w/o diamagnetic, 5=10"8

included in BOUT++ and 0.10
ignored in these NIMROD 0.08
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* Inclusion of drift effects
in NIMROD result in a
stronger than in BOUT++
mode stabilization

Growth rate yt,

Toroidal mode number n
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Equilibria generated for BOUT++ stability analysis are used in the NIMROD extended MHD

studies

Hierarchy of extended MHD models are considered

Resistive MHD

— Lundquist number S=108
— Spitzer resistivity is used
— No parallel viscosity or gyro-viscosity

— No particle diffusivity,
hyper-diffusivity or
hyper-resistivity

Resistive MHD with drifts

— Parallel viscosity and
gyro-viscosity are enabled

<
e
>

— Particle diffusivity is enabled
— No hyper-diffusivity
Two-fluid MHD
Two-fluid two-temperature MHD

NIMROD simulations uses is 72x512 grid with polynomial
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~ Linear Extended MHD NIMROD Analysis

* In resistive MHD simulations

— All equilibria are found unstable with relatively weakly growing
modes

— Spectra shifted towards higher toroidal mode numbers comparing
to BOUT++ analysis

* Inclusion of gyro-viscosity and parallel viscosity result in
significant stabilization of all modes

— Low n-modes are found completely stable

* Adding two-fluid effects destabilize all modes

— Decoupling between electrons and ions is expected to be
destabilizing

* Two-fluid two-temperature MHD

— Modes with high n that might be related to ITG modes become
unstable
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Nonlinear Simulation of KSTAR using NIMROD

* Simulation utilizes high resolution grid

* 72x512 with pd=5 and 6 (compare 20x120 with pd=4 in ELM
simulations ten years ago)

* S=108 and Prandtl number of 0.1

* No enhanced viscosity, perpendicular thermal diffusivity or
particle diffusivity relative to BraginskKii

* Utilizes over 8,000 core on Edison

* NIMROD has option to switch physics models during
restart

* Simulation is started with 1fl model and continued with
2fl model
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Magnetic energy as function of time during linear and
early non-linear stages
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« ELM starts to saturate

 Dominant mode
numbers are in the range
from n=17 to n=21

* Direct cascade is found

important o
 Modes in range from n=34

to n=42 are ”

driven "
=

* It is important to = -
include at least ==
second harmonics
in simulations &

* Results are found to be
different comparing to
M3D modeling of ELMs in
DIII-D
[L. Sugiyama Phys. Scr.
2012]
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* Magnetic perturbations become large enough and
magnetic tangle developed

* Magnetic
geometry of
diverted X-point
makes the
plasma
susceptible to
reconnection

o

o

o

* Hot plasma
inside the LCFS *
can connect to
the plasma
facing
components

x PPPL Seminar, Princeton, April 11, 201
TECH-)




SOL profiles are important because

* These profiles allow realistic resistivity inside and outslde LCFS
* SOL current profiles can help to avoid unphysical discontinuities

* Details are important
for two-fluid, FLR and
closures responses

NIMROD resolves Grad-
Shafranov solver to self-
consistent currents in open
flux region

NIMROD domain includes:

* Closed-flux region
* Scrape-off layer (SOL)
* Current-free region
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~ NIMROD for SOL Transport Studies

* Inclusion of SOL profiles in NIMROD extends the code
capabilities for transport studies in SOL

« JXB=V p force balance in extended MHD does not imply
steady states

* SOL flows due to FLR, two-fluid, and closures responses
[A. Aydemir NF 2009; S. Pamela PPCF 2010]

* NIMROD studies to investigate these flows and their
effects on ELM dynamics are initiated

* Braginskii and DKE-closures for axisymetric transport
modeling

* NUBEAM and TORIC in TRANSP and ONETWO for sources
* Multiple ELM cycles can simulated in NIMROD
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Two-fluid and FLR effect increase these differences between
poloidal and toroidal flows

—Use of local and global upwinding schemes helps to resolve
numerical issues in SOL reaion
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Toroidal and poloidal vel
are smaller
in the discharges with

larger plasma currents

— Effect is likely related
to different resistivity
profiles

— Discharges with larger
plasma currents have
larger temperatures in
H-mode pedestal region

— Neoclassical effects are
not included in these
simulations yet
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Summary

* NIMROD capabilities for ELM modeling are presented
— FGNIMEQ tool for resolve Grad-Shafranov equilibria on NIMROD grid
— Plasma profiles and plasma currents are extended to SOL

— MEUDAS benchmark case is extended to study collisionality effects

« Most unstable mode numbers shifted towards lower n for cases with
higher temperatures due to FLR effects

* High-n mode stabilized due to FLR effects

— Equilibrium evolved in extended MHD code result in large SOL flows
* Resistivity gradient is found to have little effect on SOL flows
* Two-fluid effects are found important both for toroidal and poloidal flows

* Two-fluid effects enhance the SOL poloidal flows by 1000x compared to
poloidal flows computed using resistive MHD

 SOL flows decrease with the plasma current
* SOL flows can significantly change the ELM dynamics

— New closures are being developed and tested

‘KSTAR ELM modeling results are presented
— Two-fluid MHD is important for linear and nonlinear dynamics
— Direct cascade is found important

— Magnetic tangle developed
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MEUDAS Benchmark is Extended to Study Collisionality Effect:

* This includes the pressure profiles and bootstrap current
* Density and temperature profiles are scaled up and down
* FLR effects are expected to be larges for the case with smaller density and
larger temperature
* Most unstable mode numbers shifted towards lower n for cases
with higher temperatures

* High-n mode stabilized due to FLR effects
J. King et al to be sub[nitted
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- FGNIMEQDevelopment

* Mapping issues between experimental equilibria and
NIMROD grid are addressed

* Developed from
NIMEQ solver Mappea clirrent re-solved current
[Howell CPC 2014] E{gSXezUsvIEllsg)
and FLUXGRID

equilibrium mapper
* Allow using low
resolution
experimental
equilibrium
\/

reconstruction in
NIMROD for edge

problems // B
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« Analytical estimate of diamagnetic The radial extent of the diamagnetic drift
I : is narrower than ELM eigenfunctions, and
stabilization radial localization is known to reduce the
[K. V. Roberts and J. B. Taylor, stabilizing effect of ion diamagnetic drift
PRL 8 (:96%)]b_l_t t [R. J. Hastie, et al PoP 7 (2000)]
suggests stability a
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