

Progress of the non-Maxwellian extension of the full-wave TORIC v.5 code in the high harmonic and minority heating regimes

N. Bertelli¹, E. Valeo¹,

D. L. Green², M. Gorelenkova¹, C. K. Phillips¹, J. Lee³, J. C. Wright³, and P. T. Bonoli³

> ¹*PPPL*, ²*ORNL*,³*MIT* April 18, 2016

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
 - Bi-Maxwellian distribution
 - Slowing-down distribution
 - from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

NSTX-U

Outline

Motivation

- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
 - Bi-Maxwellian distribution
 - Slowing-down distribution
 - from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

Motivation

- Experiments show that the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection (NBI)
 - The distribution function modifications will, generally, result in finite changes in the amount and spatial location of absorption
 - In NSTX, fast waves (FWs) can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes (TAEs) and global Alfvén eigenmodes (GAEs) and fishbones • See Fredrickson et al NF 2015
- Similarly, the non-Maxwellian effects play an important role in the interaction between FWs and ion minority species in the IC minority heating scheme

Outline

Motivation

• TORIC v.5: brief code description

- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
 - Bi-Maxwellian distribution
 - Slowing-down distribution
 - from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

• The TORIC v.5 code solves the wave equation for the electric field E: $\nabla \times \nabla \times \mathbf{E} = \frac{\omega^2}{\omega^2} \mathbf{e} \cdot \mathbf{E} = 4\pi i \frac{\omega}{\omega} \mathbf{I}^A$

$$\nabla \times \nabla \times \mathbf{E} - \frac{\omega}{c^2} \boldsymbol{\varepsilon} \cdot \mathbf{E} = 4\pi i \frac{\omega}{c^2} \mathbf{J}^A$$

- TORIC-HHFW: High Harmonic Fast Wave regime
 - Full hot-plasma dielectric tensor employed
 - The k² value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs
- TORIC: IC minority regime
 - = FLR corrections only up to the $\omega=2\omega_{
 m cl}$
 - Non-Maxw. extension completed and tested but not shown here

• The TORIC v.5 code solves the wave equation for the electric field E:

$$\nabla \times \nabla \times \mathbf{E} - \frac{\omega^2}{c^2} \boldsymbol{\varepsilon} \cdot \mathbf{E} = 4\pi i \frac{\omega}{c^2} \mathbf{J}^A$$
prescribed antenna current density

- TORIC-HHFW: High Harmonic Fast Wave regime
 - Full hot-plasma dielectric tensor employed
 - The k² value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs
- TORIC: IC minority regime
 - = FLR corrections only up to the $\omega=2\omega_{
 m cl}$
 - Non-Maxw. extension completed and tested but not shown here.

• The TORIC v.5 code solves the wave equation for the electric field E:

$$\nabla \times \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \boldsymbol{\epsilon} \cdot \mathbf{E} = 4\pi i \frac{\omega}{c^2} \mathbf{J}^A$$

dielectric tensor
prescribed antenna
current density

- TORIC-HHFW: High Harmonic Fast Wave regime
 - Full hot-plasma dielectric tensor employed
 - The k² value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs
- TORIC: IC minority regime
 - = ELR corrections only up to the $\omega=2\omega_{
 m eff}$
 - Non-Maxw. extension completed and tested but not shown here.

- The TORIC v.5 code solves the wave equation for the electric field E: $\nabla \times \nabla \times \mathbf{E} - \frac{\omega^2}{c^2} \boldsymbol{\epsilon} \cdot \mathbf{E} = 4\pi i \frac{\omega}{c^2} \mathbf{J}^A$
- TORIC v.5 uses a Maxwellian plasma dielectric tensor

$$oldsymbol{arepsilon} oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega} oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

- Two TORIC v.5's versions:
 - TORIC-HHFW: High Harmonic Fast Wave regime
 - Full hot-plasma dielectric tensor employed
 - The k² value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs
 - TORIC: IC minority regime
 - $_{
 m eff}$ = FLR corrections only up to the $\omega=2\omega_{
 m eff}$
 - Non-Maxw. extension completed and tested but not shown hereit

- The TORIC v.5 code solves the wave equation for the electric field E: $\nabla \times \nabla \times \mathbf{E} - \frac{\omega^2}{c^2} \boldsymbol{\epsilon} \cdot \mathbf{E} = 4\pi i \frac{\omega}{c^2} \mathbf{J}^A$
- TORIC v.5 uses a Maxwellian plasma dielectric tensor

$$oldsymbol{arepsilon} oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega} oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

• Two TORIC v.5's versions:

- TORIC-HHFW: High Harmonic Fast Wave regime
 - Full hot-plasma dielectric tensor employed

The k² value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs

- TORIC: IC minority regime
 - **FLR** corrections only up to the $\omega = 2\omega_{ci}$
 - Non-Maxw. extension completed and tested but not shown here

More TORIC info

- The TORIC v.5 code solves the wave equation for the electric field E: $\nabla \times \nabla \times \mathbf{E} - \frac{\omega^2}{c^2} \boldsymbol{\epsilon} \cdot \mathbf{E} = 4\pi i \frac{\omega}{c^2} \mathbf{J}^A$
- TORIC v.5 uses a Maxwellian plasma dielectric tensor

$$oldsymbol{arepsilon} oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega} oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

- Two TORIC v.5's versions:
 - TORIC-HHFW: High Harmonic Fast Wave regime
 - Full hot-plasma dielectric tensor employed
 - The k² value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs
 - TORIC: IC minority regime
 - FLR corrections only up to the $\omega = 2\omega_{ci}$
 - Non-Maxw. extension completed and tested but not shown here

NSTX-U

- The TORIC v.5 code solves the wave equation for the electric field E: $\nabla \times \nabla \times \mathbf{E} - \frac{\omega^2}{c^2} \boldsymbol{\epsilon} \cdot \mathbf{E} = 4\pi i \frac{\omega}{c^2} \mathbf{J}^A$
- TORIC v.5 uses a Maxwellian plasma dielectric tensor

$$oldsymbol{arepsilon} oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega} oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

- Two TORIC v.5's versions:
 - TORIC-HHFW: High Harmonic Fast Wave regime
 - Full hot-plasma dielectric tensor employed
 - The k² value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs
 - TORIC: IC minority regime
 - FLR corrections only up to the $\omega = 2\omega_{ci}$

Extra slides TORIC-IC

Non-Maxw. extension completed and tested but not shown here

$$oldsymbol{arepsilon} oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega} oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

Susceptibility tensor $\chi[f_0(\mathbf{x}; \mathbf{v})]$, is a functional of f_0 , which, in general, is **non-Maxwellian**

INPUT:

- Density & Temp. for each species
- Magnetic equilibrium

$$oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega}oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

Susceptibility tensor $\chi[f_0(\mathbf{x}; \mathbf{v})]$, is a functional of f_0 , which, in general, is **non-Maxwellian**

INPUT:

- Density & Temp. for each species
- Magnetic equilibrium

$$oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega}oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

Susceptibility tensor $\chi[f_0(\mathbf{x}; \mathbf{v})]$, is a functional of f_0 , which, in general, is **non-Maxwellian**

INPUT:

- Density & Temp. for each species
- Magnetic equilibrium

NSTX-U

- $\chi(f = f_{\text{Maxw.}}) \iff$ Analytical expression lacksquare
- Thermal species \Longrightarrow NSTX-U data
- Non-thermal species (fast ions) \implies NUBEAM

$$T_{\rm FI} = \frac{2}{3} \frac{E}{n_{\rm FI}}$$
 (effective temperature)

$$oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega}oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

Susceptibility tensor $\chi[f_0(\mathbf{x}; \mathbf{v})]$, is a functional of f_0 , which, in general, is **non-Maxwellian**

INPUT:

- Density & Temp. for each species
- Magnetic equilibrium

NSTX-U

- $\chi(f = f_{\text{Maxw.}})$ \iff Analytical expression lacksquare
- Thermal species \Longrightarrow NSTX-U data
- Non-thermal species (fast ions) \implies NUBEAM

 $T_{\rm FI} = \frac{2}{3} \frac{E}{n_{\rm FI}} (\text{effective temperature})$ Fast ions energy

$$oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega}oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

Susceptibility tensor $\chi[f_0(\mathbf{x}; \mathbf{v})]$, is a functional of f_0 , which, in general, is **non-Maxwellian**

INPUT:

- Density & Temp. for each species
- Magnetic equilibrium

NSTX-U

- $\chi(f = f_{\text{Maxw.}}) \iff$ Analytical expression lacksquare
- Thermal species \Longrightarrow NSTX-U data
- Non-thermal species (fast ions) \implies NUBEAM

$$oldsymbol{arepsilon} \equiv \mathbf{I} + rac{4\pi i}{\omega}oldsymbol{\sigma} = \mathbf{I} + oldsymbol{\chi}$$

Susceptibility tensor $\chi[f_0(\mathbf{x}; \mathbf{v})]$, is a functional of f_0 , which, in general, is **non-Maxwellian**

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
 - Bi-Maxwellian distribution
 - Slowing-down distribution
 - from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

Local coordinate frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$ with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}} = 0$ (Stix)

$$\begin{split} \boldsymbol{\chi}_{\mathrm{s}} &= \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\parallel}^{2}}{\omega} \left(\frac{1}{v_{\parallel}} \frac{\partial f}{\partial v_{\parallel}} - \frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}} \right)_{\mathrm{s}} + \\ &+ \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \sum_{n=-\infty}^{+\infty} \left[\frac{v_{\perp}U}{\omega - k_{\parallel}v_{\parallel} - n\Omega_{\mathrm{cs}}} \mathbf{T}_{n} \right] \end{split}$$

Local coordinate frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$ with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}} = 0$ (Stix)

$$\begin{split} \boldsymbol{\chi}_{\mathrm{s}} &= \frac{\omega_{\mathrm{ps}}^2}{\omega} \int_0^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\parallel}^2}{\omega} \left(\frac{1}{v_{\parallel}} \frac{\partial f}{\partial v_{\parallel}} - \frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}} \right)_{\mathrm{s}} + \\ &+ \frac{\omega_{\mathrm{ps}}^2}{\omega} \int_0^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \sum_{n=-\infty}^{+\infty} \left[\frac{v_{\perp} U}{\omega - k_{\parallel} v_{\parallel} - n\Omega_{\mathrm{cs}}} \mathbf{T}_n \right] \end{split}$$

Local coordinate frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$ with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}} = 0$ (Stix)

$$\begin{split} \boldsymbol{\chi}_{\mathrm{s}} &= \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\parallel}^{2}}{\omega} \left(\frac{1}{v_{\parallel}} \frac{\partial f}{\partial v_{\parallel}} - \frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}} \right)_{\mathrm{s}} + \\ &+ \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \sum_{n=-\infty}^{+\infty} \left[\frac{v_{\perp} U}{\omega - k_{\parallel} v_{\parallel} - n\Omega_{\mathrm{cs}}} \mathbf{T}_{n} \right] \end{split}$$

where

$$U \equiv \frac{\partial f}{\partial v_{\perp}} + \frac{k_{\parallel}}{\omega} \left(v_{\perp} \frac{\partial f}{\partial v_{\parallel}} - v_{\parallel} \frac{\partial f}{\partial v_{\perp}} \right)$$
 and

Local coordinate frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$ with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}} = 0$ (Stix)

$$\begin{split} \boldsymbol{\chi}_{\mathrm{s}} &= \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\parallel}^{2}}{\omega} \left(\frac{1}{v_{\parallel}} \frac{\partial f}{\partial v_{\parallel}} - \frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}} \right)_{\mathrm{s}} + \\ &+ \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \sum_{n=-\infty}^{+\infty} \left[\frac{v_{\perp}U}{\omega - k_{\parallel}v_{\parallel} - n\Omega_{\mathrm{cs}}} \mathbf{T}_{n} \right] \end{split}$$

where

$$U \equiv \frac{\partial f}{\partial v_{\perp}} + \frac{k_{\parallel}}{\omega} \left(v_{\perp} \frac{\partial f}{\partial v_{\parallel}} - v_{\parallel} \frac{\partial f}{\partial v_{\perp}} \right) \qquad \text{and}$$

Local coordinate frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$ with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}} = 0$ (Stix)

$$\begin{split} \boldsymbol{\chi}_{\mathrm{s}} &= \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\parallel}^{2}}{\omega} \left(\frac{1}{v_{\parallel}} \frac{\partial f}{\partial v_{\parallel}} - \frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}} \right)_{\mathrm{s}} + \\ &+ \frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d}v_{\parallel} \sum_{n=-\infty}^{+\infty} \left[\frac{v_{\perp}U}{\omega - k_{\parallel}v_{\parallel} - n\Omega_{\mathrm{cs}}} \mathbf{T}_{n} \right] \end{split}$$

where

NSTX-U

$$U \equiv \frac{\partial f}{\partial v_{\perp}} + \frac{k_{\parallel}}{\omega} \left(v_{\perp} \frac{\partial f}{\partial v_{\parallel}} - v_{\parallel} \frac{\partial f}{\partial v_{\perp}} \right)$$
 and

$$\mathbf{T}_{n} = \begin{pmatrix} \frac{n^{2}J_{n}^{2}(z)}{z^{2}} & \frac{inJ_{n}(z)J_{n}'(z)}{z} & \frac{nJ_{n}^{2}(z)v_{\parallel}}{zv_{\perp}} \\ -\frac{inJ_{n}(z)J_{n}'(z)}{z} & (J_{n}'(z))^{2} & -\frac{iJ_{n}(z)J_{n}'(z)v_{\parallel}}{v_{\perp}} \\ \frac{nJ_{n}^{2}(z)v_{\parallel}}{zv_{\perp}} & \frac{iJ_{n}(z)J_{n}'(z)v_{\parallel}}{v_{\perp}} & \frac{J_{n}^{2}(z)v_{\parallel}^{2}}{v_{\perp}^{2}} \end{pmatrix}, \quad z \equiv \frac{k_{\perp}v_{\perp}}{\Omega_{cs}}$$

N. Bertelli | Progress of non-Maxw. extension of TORIC v.5 | April 18, 2016

Numerical evaluation of χ needed for arbitrary distribution function: χ is pre-computed

 The "best" approach for a complete extension of the code is to implement directly the general expression for χ (previous slide)

- Plemelj's formula $\rightarrow \frac{1}{\omega - \omega_0 \pm i0} = \wp \frac{1}{\omega - \omega_0} \mp i\pi \delta(\omega - \omega_0)$

- Integrals in the expression for χ are computed numerous times in <code>TORIC-HHFW</code> so an efficient evaluation is essential
- Precomputation of χ :

🚺 NSTX-U

- A set of N_{ψ} files is constructed, each containing the principal values and residues of χ for a single species on a uniform $(v_{\parallel}, B/B_{\min}, N_{\perp})$ mesh, for a specified flux surface ψ_j
- The distribution, $f(v_{\parallel}, v_{\perp})$, is specified in functional form at the minimum field strength point $B(\theta) = B_{\min}$ on ψ_j
- An interpolator returns the components of χ

Outline

Motivation

- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
 - Bi-Maxwellian distribution
 - Slowing-down distribution
 - from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters: $f = 30 \times 10^6$ Hz; $n_{dens} = 5 \times 10^{13}$ cm⁻³, $N_{\parallel} = 10, B = 0.5$ T, $T_i = 20$ keV $N_{harmonics} = 10$ Ion species: Deuterium Black curve: analytical solution

N. Bertelli | Progress of non-Maxw. extension of TORIC v.5 | April 18, 2016

NSTX-U

 $N_{v_{\perp}}$

50

100

150

300

600

1200

 $\frac{N_{v_{\parallel}}}{100}$

200

324

650

1300

2600

•

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

N. Bertelli | Progress of non-Maxw. extension of TORIC v.5 | April 18, 2016

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters: $f = 30 \times 10^6$ Hz; $n_{dens} = 5 \times 10^{13}$ cm⁻³, $N_{\parallel} = 10, B = 0.5$ T, $T_i = 20$ keV $N_{harmonics} = 10$ Ion species: Deuterium Black curve: analytical solution

NSTX-U

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters: $f = 30 \times 10^6$ Hz; $n_{dens} = 5 \times 10^{13}$ cm⁻³, $N_{\parallel} = 10, B = 0.5$ T, $T_i = 20$ keV $N_{harmonics} = 10$ Ion species: Deuterium Black curve: analytical solution

NSTX-U

N. Bertelli | Progress of non-Maxw. extension of TORIC v.5 | April 18, 2016

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
 - Bi-Maxwellian distribution
 - Slowing-down distribution
 - from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

Main parameters:

- TRANSP Run ID: 134909B01
- Plasma species: electron, D, D-NBI
- $B_{\rm T} = 0.53 \, {\rm T}$
- $I_{\rm p}=868~{\rm kA}$
- $T_{\rm e}(0) = 1.09 \text{ keV}$
- $n_{\rm e}(0) = 2.47 \times 10^{13} \ {\rm cm}^{-3}$
- $T_{\rm D}(0) = 1.1 \text{ keV}$
- $T_{\rm D-NBI}(0) = 21.37 \text{ keV}$
- $n_{\rm D-NBI}(0) = 2.01 \times 10^{12} \,{\rm cm}^{-3}$
- TORIC resolution: $n_{\rm mod} = 31$, $n_{\rm elm} = 200$

Excellent agreement between numerical and analytical evaluation of HHFW fields in the midplane

NSTX-U
Excellent agreement between numerical and analytical evaluation of the 2D HHFW fields

Excellent agreement between numerical and analytical evaluation of the 2D HHFW fields

Excellent agreement between numerical and analytical evaluation of the 2D HHFW fields

Absorbed fraction	Maxw. analytical	Maxw. numerical
D		
D-NBI		
Electrons		

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22 %	
D-NBI		
Electrons		

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22 %	0.22 %
D-NBI		
Electrons		

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22 %	0.22 %
D-NBI	73.88 %	
Electrons		

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22 %	0.22 %
D-NBI	73.88 %	73.58 %
Electrons		

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22 %	0.22 %
D-NBI	73.88 %	73.58 %
Electrons	25.90 %	

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22 %	0.22 %
D-NBI	73.88 %	73.58 %
Electrons	25.90 %	26.21 %

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
 - Bi-Maxwellian distribution
 - Slowing-down distribution
 - from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

- P2F code was developed by D. L. Green (ORNL)
- P2F takes a particle list and creates a 4D (R, z; v_{\parallel} , v_{\perp}) distribution function for use in a continuum code like TORIC
- At present it has essentially three modes:
 - The first really is a straight up 4D histogram giving a noisy distribution
 - The second uses Gaussian shape particles in velocity space to give smooth velocity space distributions at each point in space
 - The third is to distribute each particle along its orbit according to the percentage of bounce time giving even better statistics
- Tested P2F code starting with a particles list representing a Maxwellian:
 - Excellent agreement between the input kinetic profiles and the corresponding ones obtained from the distribution generated by P2F code

- P2F code was developed by D. L. Green (ORNL)
- P2F takes a particle list and creates a 4D (R, z; v_{\parallel} , v_{\perp}) distribution function for use in a continuum code like TORIC
- At present it has essentially three modes:
 - The first really is a straight up 4D histogram giving a noisy distribution
 - The second uses Gaussian shape particles in velocity space to give smooth velocity space distributions at each point in space
 - The third is to distribute each particle along its orbit according to the percentage of bounce time giving even better statistics
- Tested P2F code starting with a particles list representing a Maxwellian:
 - Excellent agreement between the input kinetic profiles and the corresponding ones obtained from the distribution generated by P2F code

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
 - Bi-Maxwellian distribution
 - Slowing-down distribution
 - from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

TORIC + non-Maxw. + P2F code: test on Maxwellian case

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with *f* above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

$$\begin{cases} n_{\rm e}(\rho=0) = 2.5 \times 10^{13} \ {\rm cm}^{-3} \\ n_{\rm e}(\rho=1) = 2.5 \times 10^{12} \ {\rm cm}^{-3} \\ T_{\rm e}(\rho=0) = 1 \ {\rm keV}; \ T_{\rm e}(\rho=1) = 0.1 \ {\rm keV} \\ n_{\rm FI}(\rho=0) = 2.0 \times 10^{12} \ {\rm cm}^{-3} \\ n_{\rm FI}(\rho=1) = 2.0 \times 10^{11} \ {\rm cm}^{-3} \\ T_{\rm FI}(\rho=1) = 20 \ {\rm keV}; \ T_{\rm e}(\rho=1) = 5 \ {\rm keV} \\ {\rm Parabolic \ profiles \ for \ } n_{\rm e}, \ T_{\rm e}, \ {\rm and} \ n_{\rm FI} \\ T_{\rm FI}(\rho) = (T_{\rm FI,0} - T_{\rm FI,1}) \left(1 - \rho^2\right)^5 + T_{\rm FI,1} \end{cases}$$

TORIC + non-Maxw. + P2F code: test on Maxwellian case

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

TORIC + non-Maxw. + P2F code: test on Maxwellian case

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

2k particles

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

NSTX-U

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

NSTX-U

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

- 1. generate particle list representing a Maxwellian
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case

Initial applications

- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

 $f_{\rm D}(v_{\parallel}, v_{\perp}) = (2\pi)^{-3/2} (v_{\rm th,\parallel} v_{\rm th,\perp}^2)^{-1} \exp[-(v_{\parallel}/v_{\rm th,\parallel})^2 - (v_{\perp}/v_{\rm th,\perp})^2]$

with $v_{\mathrm{th},\parallel} = \sqrt{2C_{\parallel}T(\psi)/m_{\mathrm{D}}}$, $v_{\mathrm{th},\perp} = \sqrt{2C_{\perp}T(\psi)/m_{\mathrm{D}}}$, with constants C_{\parallel} and C_{\perp}

• For $C_{\perp}=1$ and $C_{\parallel}=\{.5,1.,3.,5.\}$, $P_{\rm D-NBI}$, varied by less than 1%

– for small $C_{\rm H}$, the absorption profile tends to be localized to the resonant layers

$$f_{\rm D}(v_{\parallel}, v_{\perp}) = (2\pi)^{-3/2} (v_{\rm th,\parallel} v_{\rm th,\perp}^2)^{-1} \exp[-(v_{\parallel}/v_{\rm th,\parallel})^2 - (v_{\perp}/v_{\rm th,\perp})^2]$$

with $v_{\mathrm{th},\parallel} = \sqrt{2C_{\parallel}T(\psi)/m_{\mathrm{D}}}$, $v_{\mathrm{th},\perp} = \sqrt{2C_{\perp}T(\psi)/m_{\mathrm{D}}}$, with constants C_{\parallel} and C_{\perp}

• For $C_{\perp}=1$ and $C_{\parallel}=\{.5,1.,3.,5.\},$ $P_{\rm D-NBI},$ varied by less than 1%

- for small C_{\parallel} , the absorption profile tends to be localized to the resonant layers

$$f_{\rm D}(v_{\parallel},v_{\perp}) = (2\pi)^{-3/2} (v_{\rm th,\parallel} v_{\rm th,\perp}^2)^{-1} \exp[-(v_{\parallel}/v_{\rm th,\parallel})^2 - (v_{\perp}/v_{\rm th,\perp})^2]$$

with $v_{\mathrm{th},\parallel} = \sqrt{2C_{\parallel}T(\psi)/m_{\mathrm{D}}}$, $v_{\mathrm{th},\perp} = \sqrt{2C_{\perp}T(\psi)/m_{\mathrm{D}}}$, with constants C_{\parallel} and C_{\perp}

• For $C_{\perp}=1$ and $C_{\parallel}=\{.5,1.,3.,5.\},$ $P_{\rm D-NBI},$ varied by less than 1%

- for small C_{\parallel} , the absorption profile tends to be localized to the resonant layers

NSTX-U

$$f_{\rm D}(v_{\parallel},v_{\perp}) = (2\pi)^{-3/2} (v_{\rm th,\parallel} v_{\rm th,\perp}^2)^{-1} \exp[-(v_{\parallel}/v_{\rm th,\parallel})^2 - (v_{\perp}/v_{\rm th,\perp})^2]$$

with $v_{\mathrm{th},\parallel} = \sqrt{2C_{\parallel}T(\psi)/m_{\mathrm{D}}}$, $v_{\mathrm{th},\perp} = \sqrt{2C_{\perp}T(\psi)/m_{\mathrm{D}}}$, with constants C_{\parallel} and C_{\perp}

• For $C_{\perp}=1$ and $C_{\parallel}=\{.5,1.,3.,5.\},$ $P_{\rm D-NBI},$ varied by less than 1%

- for small C_{\parallel} , the absorption profile tends to be localized to the resonant layers

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case

Initial applications

- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

Slowing-down distribution

$$f_{\rm D}(v_{\parallel}, v_{\perp}) = \begin{cases} \frac{A}{v_{\rm c}^3} \frac{1}{1 + (v/v_{\rm c})^3} & \text{for } v < v_{\rm m}, \\ 0 & \text{for } v > v_{\rm m} \end{cases} v_{\rm m} \equiv \sqrt{2E_{\rm D-NBI}/m_{\rm D}} \\ A = 3/[4\pi \ln(1 + \delta^{-3})], \quad \delta \equiv \frac{v_{\rm c}}{v_{\rm m}}, \quad v_{\rm c} = 3\sqrt{\pi}(m_{\rm e}/m_{\rm D})Z_{\rm eff}v_{\rm th}^3, \quad Z_{\rm eff} \equiv \sum_{\rm ions} \frac{Z_{\rm i}^2 n_{\rm i}}{n_{\rm e}} \end{cases}$$

For $Z_{\text{eff}} = 2$ and $E_{\text{D-NBI}} = 30, 60, 90, 120 \text{ keV} \Longrightarrow P_{\text{D-NBI}} = \{77.84\%, 75.85\%, 70.97\%, 64.71\%\}$

- Similar behavior when varied $C_{
 m \perp}$ in the bi-Maxwellian case
- Fast ions absorption should decrease with something like $T_{\text{fast ions}}^{-3/2}$ (?)

Slowing-down distribution

$$f_{\rm D}(v_{\parallel}, v_{\perp}) = \begin{cases} \frac{A}{v_{\rm c}^3} \frac{1}{1 + (v/v_{\rm c})^3} & \text{for } v < v_{\rm m}, \\ 0 & \text{for } v > v_{\rm m} \end{cases} \quad v_{\rm m} \equiv \sqrt{2E_{\rm D-NBI}/m_{\rm D}}$$

 $A = 3/[4\pi \ln(1+\delta^{-3})], \quad \delta \equiv \frac{v_{\rm c}}{v_{\rm m}}, \quad v_{\rm c} = 3\sqrt{\pi}(m_{\rm e}/m_{\rm D})Z_{\rm eff}v_{\rm th}^3, \quad Z_{\rm eff} \equiv \sum_{\rm ions} \frac{Z_{\rm i}^2 n_{\rm i}}{n_{\rm e}}$

 $\mathsf{For}\ Z_{\mathrm{eff}} = 2 \ \mathsf{and}\ E_{\mathrm{D-NBI}} = 30, 60, 90, 120 \ \mathsf{keV} \Longrightarrow P_{\mathrm{D-NBI}} = \{77.84\%, 75.85\%, 70.97\%, 64.71\%\}$

- Similar behavior when varied C_{\perp} in the bi-Maxwellian case
- Fast ions absorption should decrease with something like $T_{\rm fast\ ions}^{-3/2}$ (?)

Slowing-down distribution

NSTX-U

$$f_{\rm D}(v_{\parallel}, v_{\perp}) = \begin{cases} \frac{A}{v_{\rm c}^3} \frac{1}{1 + (v/v_{\rm c})^3} & \text{for } v < v_{\rm m}, \\ 0 & \text{for } v > v_{\rm m} \end{cases} \quad v_{\rm m} \equiv \sqrt{2E_{\rm D-NBI}/m_{\rm D}}$$

 $A = 3/[4\pi \ln(1+\delta^{-3})], \quad \delta \equiv \frac{v_{\rm c}}{v_{\rm m}}, \quad v_{\rm c} = 3\sqrt{\pi}(m_{\rm e}/m_{\rm D})Z_{\rm eff}v_{\rm th}^3, \quad Z_{\rm eff} \equiv \sum_{\rm ions} \frac{Z_{\rm i}^2 n_{\rm i}}{n_{\rm e}}$

 $\mathsf{For}\ Z_{\mathrm{eff}} = 2 \ \mathsf{and}\ E_{\mathrm{D-NBI}} = 30, 60, 90, 120 \ \mathsf{keV} \Longrightarrow P_{\mathrm{D-NBI}} = \{77.84\%, 75.85\%, 70.97\%, 64.71\%\}$

- Similar behavior when varied C_{\perp} in the bi-Maxwellian case
- Fast ions absorption should decrease with something like $T_{\text{fast ions}}^{-3/2}$ (?)

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v.5 in HHFW heating regime
 - Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
 - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
 - P2F code: from a particles list to a continuum distribution function
 - Test I: TORIC wave solution: particle list + P2F for a Maxw. case

Initial applications

- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary & still in progress)
- Conclusions
- Future steps

NUBEAM particles list (tests in progress)

NSTX shot 117929 $P_{\rm HHFW} = 2.9$ MW $P_{\rm NBI} = 2$ MW $I_{\rm P} = 300$ kA TAE & GAE suppressed particles number = 3344

Need to start a case adding low P_{HHFW} and then increase it

- 1. get NUBEAM particle list
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

NSTX shot 117929 $P_{\rm HHFW} = 2.9 \text{ MW}$ $P_{\rm NBI} = 2 \text{ MW}$ $I_{\rm P} = 300 \text{ kA}$ TAE & GAE suppressed particles number = 3344

• Need to start a case adding low $P_{\rm HHFW}$ and then increase it

NUBEAM particles list (tests in progress)

Procedure:

- 1. get NUBEAM particle list
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

NSTX shot 117929 $P_{\text{HHFW}} = 2.9 \text{ MW}$ $P_{\text{NBI}} = 2 \text{ MW}$ $I_{\text{P}} = 300 \text{ kA}$ TAE & GAE suppressed particles number = 3344

 $R \sim 0.9 \text{ m}, Z \sim 0 \text{ m}$

• Need to start a case adding low $\ensuremath{\mathit{P}_{\rm HHFW}}$ and then increase it
NUBEAM particles list (tests in progress)

Procedure:

- 1. get NUBEAM particle list
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

NSTX shot 117929 $P_{\rm HHFW} = 2.9 \text{ MW}$ $P_{\rm NBI} = 2 \text{ MW}$ $I_{\rm P} = 300 \text{ kA}$ TAE & GAE suppressed particles number = 3344

Abs. fraction	f Maxw.	f non -Maxw.
Electrons	50.85 %	79.40 %
D-NBI	49.13 %	20.57 %

Need to start a case adding low P_{HHFW} and then increase it

NUBEAM particles list (tests in progress)

Procedure:

- 1. get NUBEAM particle list
- **2.** run P2F to obtain a distribution function, f
- **3.** pre-compute χ with f above
- 4. run TORIC with pre-computed χ
- 5. compare TORIC run with standard TORIC

NSTX shot 117929 $P_{\rm HHFW} = 2.9 \text{ MW}$ $P_{\rm NBI} = 2 \text{ MW}$ $I_{\rm P} = 300 \text{ kA}$ TAE & GAE suppressed particles number = 3344

Abs. fraction	f Maxw.	f non -Maxw.
Electrons	50.85 %	79.40 %
D-NBI	49.13 %	20.57 %

Need to start a case adding low P_{HHFW} and then increase it

Conclusions

- A generalization of the full wave TORIC v.5 code in the high harmonic and minority heating regimes has been implemented to include species with arbitrary velocity distribution functions
- Implementation of the full hot dielectric tensor reproduces the analytic Maxwellian case
- Non-Maxwellian extension of TORIC in HHFW regime reproduces previous simulations with both a specified functional form of the distribution functions and a particle list
- For a bi-Maxwellian distribution, the fast ions absorbed power is insensitive to variations in T_{\parallel} , but varies with changes in T_{\perp}
- For slowing down distribution, the fast ions absorbed power varies with changes in $E_{\rm NBI}$
 - $P_{\rm D-NBI}$ decreases with increasing $E_{\rm NBI}$
- First attempts to apply TORIC generalization with a NUBEAM particle list
 - preliminary results with arbitrary distribution functions appears significantly different than Maxw. case results
 - still additional tests/checks needed

Future steps

For HHFW regime:

- Add options to read a distribution function from CQL3D Fokker-Planck code for HHFW heating regime
 - Use the distribution function from CQL3D to include, for instance, finite orbit effects
 - Possible comparison with FIDA data as done previously by D. Liu & R. Harvey
- Further NSTX/NSTX-U applications/tests using a NUBEAM particle list and comparison with slowing down distribution function
- Attempts to apply this extension in a self-consistent way with the NUBEAM module
 - Need first some tests to the kick-operator implemented in NUBEAM

For IC minority regime (in collaboration with J. Lee, J. Wright, and P. Bonoli)

- the quasilinear diffusion coefficients has been recently derived and implemented in TORIC v.5 (work done by Jungpyo Lee from MIT)
 - Necessary to couple TORIC v.5 and CQL3D
 - Able to iterate the extension of TORIC v.5 with the quasilinear coefficients routine and CQL3D
 - Tests underway on the evaluation of the quasilinear diffusion coefficients

Future steps

For HHFW regime:

- Add options to read a distribution function from CQL3D Fokker-Planck code for HHFW heating regime
 - Use the distribution function from CQL3D to include, for instance, finite orbit effects
 - Possible comparison with FIDA data as done previously by D. Liu & R. Harvey
- Further NSTX/NSTX-U applications/tests using a NUBEAM particle list and comparison with slowing down distribution function
- Attempts to apply this extension in a self-consistent way with the NUBEAM module
 - Need first some tests to the kick-operator implemented in NUBEAM
- For IC minority regime (in collaboration with J. Lee, J. Wright, and P. Bonoli)
 - the quasilinear diffusion coefficients has been recently derived and implemented in TORIC v.5 (work done by Jungpyo Lee from MIT)
 - Necessary to couple TORIC v.5 and CQL3D
 - Able to iterate the extension of TORIC v.5 with the quasilinear coefficients routine and CQL3D
 - Tests underway on the evaluation of the quasilinear diffusion coefficients

TORIC code: additional info

• Spectral ansatz $\mathbf{E}(\mathbf{r},t) = \sum_{m,n} \mathbf{E}^{mn}(\psi) e^{i(m\theta + n\phi - \omega t)}$

 $m \rightarrow$ poloidal mode number; $n \rightarrow$ toroidal mode number

- For each toroidal component one has to solve a (formally infinite) system of coupled ordinary differential equations for the physical components of $E^{mn}(\psi)$, written in the local field-aligned orthogonal basis vectors.
- The Spectral Ansatz transforms the θ -integral of the constitutive relation into a convolution over poloidal modes.
- Due to the toroidal axisymmetry, the wave equations are solved separately for each toroidal Fourier component.
- A spectral decomposition defines an accurate representation of the "local" parallel wave-vector $k^m_{\parallel} = (m \nabla \theta + n \nabla \phi) \cdot \hat{\mathbf{b}}$
- The ψ variation is represented by Hermite cubic finite elements
- Principal author M. Brambilla (IPP Garching, Germany)

The susceptibility for a hot plasma with a Maxwellian distribution function can be evaluated analitically

$$\chi_{\rm s} = \left[\hat{\mathbf{z}} \hat{\mathbf{z}} \frac{2\omega_{\rm p}^2}{\omega k_{\parallel} v_{\rm th}^2} \left\langle v_{\parallel} \right\rangle + \frac{\omega_{\rm p}^2}{\omega} \sum_{n=-\infty}^{+\infty} e^{-\lambda} \mathbf{Y}_n(\lambda) \right]_s$$

where

back

$$\mathbf{Y}_{n} = \begin{pmatrix} \frac{n^{2}I_{n}}{\lambda}A_{n} & -in(I_{n} - I_{n}')A_{n} & \frac{k_{\perp}}{\omega_{c}}\frac{nI_{n}}{\lambda}B_{n} \\ in(I_{n} - I_{n}')A_{n} & \left(\frac{n^{2}}{\lambda}I_{n} + 2\lambda I_{n} - 2\lambda I_{n}'\right)A_{n} & \frac{ik_{\perp}}{\omega_{c}}(I_{n} - I_{n}')B_{n} \\ \frac{k_{\perp}}{\omega_{c}}\frac{nI_{n}}{\lambda}B_{n} & -\frac{ik_{\perp}}{\omega_{c}}(I_{n} - I_{n}')B_{n} & \frac{2(\omega - n\omega_{c})}{k_{\parallel}v_{\mathrm{th}}^{2}}I_{n}B_{n} \end{pmatrix}$$

 $A_n = \frac{1}{k_{\parallel} v_{\rm th}} Z_0(\zeta_n), \quad B_n = \frac{1}{k_{\parallel}} (1 + \zeta_n Z_0(\zeta_n)), \quad Z_0(\zeta_n) \equiv \text{plasma dispersion func.}$

$$\zeta_n \equiv \frac{\omega - n\omega_c}{k_{\parallel}v_{\rm th}}, \quad \lambda \equiv \frac{k_{\perp}^2 v_{\rm th}^2}{2\Omega_c^2}$$

NSTX-U N. Bertelli | Progress of non-Maxw. extension of TORIC v.5 | April 18, 2016

P2F code: test on Maxwellian case

NSTX shot 117929 from Fredrickson et al. NF 2015

back

Finite elements to use to compute the resonant integrals

We need to evaluate integrals of the form

$$I_k = \int \mathrm{d}v \frac{C(v)}{v - v_k}$$

- Since I_k is a smooth function of v_k , evaluate on a uniform mesh $v_k = k\Delta v$, and interpolate
- Express smooth integrand C(v) in terms of (linear) finite elements C(v) = ∑_j c_jT_j, with T_j centered at v_j

Then

NSTX-U

$$I_k = \sum_j \int \mathrm{d}v \frac{c_j T_j}{v - v_k} = \sum_j c_j K_{j-k} = \sum_j c_{j+k} K_j$$

where the kernel is given by

$$K_{j} = \int_{-1}^{1} \mathrm{d}v \frac{1 - |v|}{v + j\Delta v} = \begin{cases} \ln\left(\frac{j+1}{j-1}\right) - j\ln\left(\frac{j^{2}}{j^{2}-1}\right), & |j| > 1, \\ \pm \ln 4, & j = \pm 1, \\ i\pi, & j = 0. \end{cases}$$

N. Bertelli | Progress of non-Maxw. extension of TORIC v.5 | April 18, 2016

Beyond Maxwellian

NSTX-U

FLR non-Maxwellian susceptibility in a local coordinate (Stix) frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$, with $\hat{\mathbf{z}} = \hat{\mathbf{b}}$, $\mathbf{k} \cdot \hat{\mathbf{y}} = 0$, to second order in $k_{\perp} v_{\perp} / \omega_{c}$

$$\begin{split} \chi_{xx} &= \frac{\omega_{\rm p,s}^2}{\omega} \left[\frac{1}{2} \left(A_{1,0} + A_{-1,0} \right) - \frac{\lambda}{2} \left(A_{1,1} + A_{-1,1} \right) + \frac{\lambda}{2} \left(A_{2,1} + A_{-2,1} \right) \right] \\ \chi_{xy} &= -\chi_{yx} = i \frac{\omega_{\rm p,s}^2}{\omega} \left[\frac{1}{2} \left(A_{1,0} - A_{-1,0} \right) - \lambda \left(A_{1,1} - A_{-1,1} \right) + \frac{\lambda}{2} \left(A_{2,1} - A_{-2,1} \right) \right] \\ \chi_{xz} &= +\chi_{zx} = -\chi_{yx} = \frac{\omega_{\rm p,s}^2}{\omega} \left(\frac{1}{2} \frac{k_\perp}{\omega} \right) \left[\left(B_{1,0} + B_{-1,0} \right) - \lambda \left(B_{1,1} + B_{-1,1} \right) + \frac{\lambda}{2} \left(B_{2,1} + B_{-2,1} \right) \right] \\ \chi_{yy} &= \frac{\omega_{\rm p,s}^2}{\omega} \left[2\lambda A_{0,1} + \frac{1}{2} \left(A_{1,0} + A_{-1,0} \right) - \frac{3\lambda}{2} \left(A_{1,1} + A_{-1,1} \right) + \frac{\lambda}{2} \left(A_{2,1} + A_{-2,1} \right) \right] \\ \chi_{yz} &= -\chi_{zy} = i \frac{\omega_{\rm p,s}^2}{\omega} \left(\frac{k_\perp}{\omega} \right) \left[B_{0,0} - \lambda B_{0,1} - \frac{1}{2} \left(B_{1,0} + B_{-1,0} \right) - \lambda \left(B_{1,1} + B_{-1,1} \right) \right] \\ &- \frac{\lambda}{4} \left(B_{2,1} + B_{-2,1} \right) \right] \\ \chi_{zz} &= \frac{2\omega_{\rm p}^2}{k_{\parallel} w_{\perp}^2} \left[\left(1 - \lambda \right) B_{0,0} + \int_{-\infty}^{+\infty} dv_{\parallel} \int_{0}^{+\infty} dv_{\perp} v_{\perp} \frac{v_{\parallel}}{\omega} f_0(v_{\parallel}, v_{\perp}) \right] \\ &+ \frac{\lambda}{2} \frac{\omega_{\rm p}^2}{\omega} \left[2 \frac{\omega - \omega_{\rm c}}{k_{\parallel} w_{\perp}^2} B_{1,0} + 2 \frac{\omega + \omega_{\rm c}}{k_{\parallel} w_{\perp}^2} B_{-1,0} \right] \\ \lambda \equiv \frac{1}{2} \left(\frac{k_{\perp} v_{\perp}}{\omega_{\rm c}} \right)^2 \left(4 \log k + \log k + \log k \right) \right] \\ \chi_{zz} = \frac{1}{2} \left(\frac{k_{\perp} v_{\perp}}{\omega_{\rm c}} \right)^2 \left(4 \log k + \log k + \log k \right) \left(2 \log k + \log k + \log k \right) \right] \\ \chi_{zz} = \frac{1}{2} \left(2 \log k + \log k + \log k \right) \left(2 \log k + \log k + \log k \right) \left(2 \log k + \log k \right) \right) \\ \chi_{zz} = \frac{1}{2} \left(2 \log k + \log k + \log k \right) \left(2 \log k + \log k + \log k \right) \left(2 \log k + \log k \right) \right) \\ \chi_{zz} = \frac{1}{2} \left(2 \log k + \log k + \log k \right) \left(2 \log k + \log k \right) \left(2 \log k + \log k \right) \right) \\ \chi_{zz} = \frac{1}{2} \left(2 \log k + \log k \right) \right) \\ \chi_{zz} = \frac{1}{2} \left(2 \log k + \log k \right) \right) \\ \chi_{zz} = \frac{1}{2} \left(2 \log k + \log k \right) \right) \\ \chi_{zz} = \frac{1}{2} \left(2 \log k + \log k \right) \right)$$

Evaluations of the FLR susceptibility requires computation of two functions $A_{n,j} B_{n,j}$, for $n = -2 \dots 2$, j = 0, 1, which are v_{\perp} moments of resonant integrals of $f_0(\psi, \frac{B}{B_{\min}}, v_{\parallel}, v_{\perp})$

$$\left\{ \begin{array}{c} A_{n,j} \\ B_{n,j} \end{array} \right\} = \int_{-\infty}^{\infty} \mathrm{d}v_{\parallel} \left\{ \begin{array}{c} 1 \\ v_{\parallel} \end{array} \right\} \frac{1}{\omega - k_{\parallel}v_{\parallel} - n\omega_{\mathrm{c}}} \int_{0}^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp} H_{j}(v_{\parallel}, v_{\perp})$$

with

and

NSTX-U

$$\begin{split} H_0(v_{\parallel}, v_{\perp}) &= \frac{1}{2} \frac{k_{\parallel} w_{\perp}^2}{\omega} \frac{\partial f_0}{\partial v_{\parallel}} - \left(1 - \frac{k_{\parallel} v_{\parallel}}{\omega}\right) f_0(v_{\parallel}, v_{\perp}) \\ H_0(v_{\parallel}, v_{\perp}) &= \frac{1}{2} \frac{k_{\parallel} w_{\perp}^2}{\omega} \frac{\partial f_0}{\partial v_{\parallel}} \frac{v_{\perp}^4}{w_{\perp}^4} - \left(1 - \frac{k_{\parallel} v_{\parallel}}{\omega}\right) f_0(v_{\parallel}, v_{\perp}) \frac{v_{\perp}^2}{w_{\perp}^2} \\ w_{\perp}^2 &\equiv \int_{-\infty}^{\infty} \mathrm{d}v_{\parallel} \int_0^{+\infty} 2\pi v_{\perp} \mathrm{d}v_{\perp}^2 f_0(v_{\parallel}, v_{\perp}) \end{split}$$

N. Bertelli | Progress of non-Maxw. extension of TORIC v.5 | April 18, 2016

Alcator C-Mod case

back

Main parameters:

- Plasma species: electron, D, and minority H (4%)
- $B_{\rm T} = 5 \, {\rm T}$
- $I_{\rm p}=1047~{\rm kA}$
- q(0) = 0.885
- q at plasma edge = 4.439
- $T_{\rm e}(0) = 2.764 \text{ keV}$
- $n_{\rm e}(0) = 1.778 \times 10^{14} \ {\rm cm}^{-3}$
- $T_{\rm D,H}(0) = 2.212 \text{ keV}$
- TORIC resolution:

$$n_{\rm mod} = 255, n_{\rm elm} = 480$$

Excellent agreement between numerical and analytical evaluation of the electric field

Excellent agreement between numerical and analytical evaluation of the electric field

Excellent agreement between numerical and analytical evaluation of the electric field

TORIC resolution: $n_{\rm mod} = 255$, $n_{\rm elm} = 480$

Absorbed fraction	Maxw. analytical	Maxw. numerical
2nd Harmonic D	10.18	10.28
Fundamental H	69.95	68.81
Electrons - FW	11.35	11.91
Electrons -IBW	8.53	9.00

Bi-Maxwellian distribution

N. Bertelli | Progress of non-Maxw. extension of TORIC v.5 | April 18, 2016