Progress of the non-Maxwellian extension of the full-wave TORIC v. 5 code in the high harmonic and minority heating regimes

N. Bertelli ${ }^{1}$, E. Valeo ${ }^{1}$,

D. L. Green ${ }^{2}$, M. Gorelenkova ${ }^{1}$, C. K. Phillips ${ }^{1}$, J. Lee ${ }^{3}$, J. C. Wright ${ }^{3}$, and P. T. Bonoli ${ }^{3}$

${ }^{1}$ PPPLL, ${ }^{2}$ ORNL, ${ }^{3}$ MIT

April 18, 2016

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

Outline

- Motivation

- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

Motivation

- Experiments show that the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection (NBI)
- The distribution function modifications will, generally, result in finite changes in the amount and spatial location of absorption
- In NSTX, fast waves (FWs) can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes (TAEs) and global Alfvén eigenmodes (GAEs) and fishbones © See Fredickson et a I NF 2015
- Similarly, the non-Maxwellian effects play an important role in the interaction between FWs and ion minority species in the IC minority heating scheme

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

TORIC v. 5 code

- The TORIC v. 5 code solves the wave equation for the electric field \mathbf{E} :

$$
\nabla \times \nabla \times \mathbf{E}-\frac{\omega^{2}}{c^{2}} \boldsymbol{\varepsilon} \cdot \mathbf{E}=4 \pi i \frac{\omega}{c^{2}} \mathbf{J}^{A}
$$

TORIC v. 5 code

- The TORIC v. 5 code solves the wave equation for the electric field \mathbf{E} :

$$
\begin{array}{r}
\nabla \times \nabla \times \mathbf{E}-\frac{\omega^{2}}{c^{2}} \boldsymbol{\varepsilon} \cdot \mathbf{E}=4 \pi i \frac{\omega}{c^{2}} \mathbf{J}^{A} \\
\begin{array}{c}
\text { prescribed antenna } \\
\text { current density }
\end{array}
\end{array}
$$

TORIC v. 5 code

- The TORIC v. 5 code solves the wave equation for the electric field \mathbf{E} :

$$
\begin{aligned}
& \nabla \times \nabla \times \mathbf{E}-\frac{\omega^{2}}{c^{2}} \varepsilon \cdot \mathbf{E}=4 \pi i \frac{\omega}{c^{2}} \mathbf{J}^{A} \\
& \text { dielectric tensor } \\
& \begin{array}{c}
\text { prescribed antenna } \\
\text { current density }
\end{array}
\end{aligned}
$$

TORIC v. 5 code

- The TORIC v. 5 code solves the wave equation for the electric field \mathbf{E} :

$$
\nabla \times \nabla \times \mathbf{E}-\frac{\omega^{2}}{c^{2}} \boldsymbol{\varepsilon} \cdot \mathbf{E}=4 \pi i \frac{\omega}{c^{2}} \mathbf{J}^{A}
$$

- TORIC v. 5 uses a Maxwellian plasma dielectric tensor

$$
\varepsilon \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

- Two TORIC v. 5 's versions:

TORIC v. 5 code

- The TORIC v. 5 code solves the wave equation for the electric field \mathbf{E} :

$$
\nabla \times \nabla \times \mathbf{E}-\frac{\omega^{2}}{c^{2}} \boldsymbol{\varepsilon} \cdot \mathbf{E}=4 \pi i \frac{\omega}{c^{2}} \mathbf{J}^{A}
$$

- TORIC v. 5 uses a Maxwellian plasma dielectric tensor

$$
\varepsilon \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

- Two TORIC v.5's versions:

TORIC v. 5 code

- The TORIC v. 5 code solves the wave equation for the electric field \mathbf{E} :

$$
\nabla \times \nabla \times \mathbf{E}-\frac{\omega^{2}}{c^{2}} \boldsymbol{\varepsilon} \cdot \mathbf{E}=4 \pi i \frac{\omega}{c^{2}} \mathbf{J}^{A}
$$

- TORIC v. 5 uses a Maxwellian plasma dielectric tensor

$$
\varepsilon \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

- Two TORIC v.5's versions:
- TORIC-HHFW: High Harmonic Fast Wave regime
- Full hot-plasma dielectric tensor employed
- The k^{2} value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs

TORIC: IC minority regime

TORIC v. 5 code

- The TORIC v. 5 code solves the wave equation for the electric field \mathbf{E} :

$$
\nabla \times \nabla \times \mathbf{E}-\frac{\omega^{2}}{c^{2}} \boldsymbol{\varepsilon} \cdot \mathbf{E}=4 \pi i \frac{\omega}{c^{2}} \mathbf{J}^{A}
$$

- TORIC v. 5 uses a Maxwellian plasma dielectric tensor

$$
\boldsymbol{\varepsilon} \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

- Two TORIC v.5's versions:
- TORIC-HHFW: High Harmonic Fast Wave regime
- Full hot-plasma dielectric tensor employed
- The k^{2} value in the argument of the Bessel functions is obtained by solving the local dispersion relation for FWs
- TORIC: IC minority regime

■ FLR corrections only up to the $\omega=2 \omega_{\mathrm{ci}} \quad$ Extra sides Toric-Ic
■ Non-Maxw. extension completed and tested but not shown here

Standard "Maxwellian" procedure to run TORIC v. 5

$$
\varepsilon \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

Susceptibility tensor $\chi\left[f_{0}(\mathbf{x} ; \mathbf{v})\right]$, is a functional of f_{0}, which, in general, is non-Maxwellian

Standard "Maxwellian" procedure to run TORIC v. 5

$$
\boldsymbol{\varepsilon} \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

Susceptibility tensor $\chi\left[f_{0}(\mathbf{x} ; \mathbf{v})\right]$, is a functional of f_{0}, which, in general, is non-Maxwellian

INPUT:

- Density \& Temp. for each species
- Magnetic equilibrium

Standard "Maxwellian" procedure to run TORIC v. 5

$$
\boldsymbol{\varepsilon} \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

Susceptibility tensor $\chi\left[f_{0}(\mathbf{x} ; \mathbf{v})\right]$, is a functional of f_{0}, which, in general, is non-Maxwellian

INPUT:

- Density \& Temp. for each species
- Magnetic equilibrium
- $\chi\left(f=f_{\text {Maxw. }}\right) \Longleftrightarrow$ Analytical expression \varnothing
- Thermal species \Longrightarrow NSTX-U data
- Non-thermal species (fast ions) \Longrightarrow NUBEAM

$$
T_{\mathrm{FI}}=\frac{2}{3} \frac{E}{n_{\mathrm{FI}}}(\text { effective temperature })
$$

Standard "Maxwellian" procedure to run TORIC v. 5

$$
\boldsymbol{\varepsilon} \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

Susceptibility tensor $\chi\left[f_{0}(\mathbf{x} ; \mathbf{v})\right]$, is a functional of f_{0}, which, in general, is non-Maxwellian

INPUT:

- Density \& Temp. for each species
- Magnetic equilibrium
- $\chi\left(f=f_{\text {Maxw. }}\right) \Longleftrightarrow$ Analytical expression \varnothing
- Thermal species \Longrightarrow NSTX-U data
- Non-thermal species (fast ions) \Longrightarrow NUBEAM

Standard "Maxwellian" procedure to run TORIC v. 5

$$
\varepsilon \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

Susceptibility tensor $\chi\left[f_{0}(\mathbf{x} ; \mathbf{v})\right]$, is a functional of f_{0}, which, in general, is non-Maxwellian

INPUT:

- Density \& Temp. for each species
- Magnetic equilibrium
- $\chi\left(f=f_{\text {Maxw. }}\right) \Longleftrightarrow$ Analytical expression \varnothing
- Thermal species \Longrightarrow NSTX-U data
- Non-thermal species (fast ions) \Longrightarrow NUBEAM

Standard "Maxwellian" procedure to run TORIC v. 5

$$
\varepsilon \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

Susceptibility tensor $\chi\left[f_{0}(\mathbf{x} ; \mathbf{v})\right]$, is a functional of f_{0}, which, in general, is non-Maxwellian

INPUT:

- Density \& Temp. for each species
- Magnetic

Wave
solver equilibrium

Standard "Maxwellian" procedure to run TORIC v. 5

$$
\varepsilon \equiv \mathbf{I}+\frac{4 \pi i}{\omega} \boldsymbol{\sigma}=\mathbf{I}+\chi
$$

Susceptibility tensor $\chi\left[f_{0}(\mathbf{x} ; \mathbf{v})\right]$, is a functional of f_{0}, which, in general, is non-Maxwellian

INPUT:

- Density \& Temp. for each species
- Magnetic equilibrium

OUTPUT:

- Wave electric field
- Pow. density profiles for each species
- Total absorbed pow. for each species

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor - Test II: TORIC wave solution: numerical vs. analytical Maxw. case - P2F code: from a particles list to a continuum distribution function - Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

The susceptibility for a hot plasma with an arbitrary distribution function (Eq. 48 in Stix's book page 255)

Local coordinate frame ($\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$) with $\hat{\mathbf{z}}=\hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}}=0$ (Stix)

$$
\begin{aligned}
\chi_{\mathrm{s}} & =\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\|}^{2}}{\omega}\left(\frac{1}{v_{\|}} \frac{\partial f}{\partial v_{\|}}-\frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}}\right)_{\mathrm{s}}+ \\
& +\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \sum_{n=-\infty}^{+\infty}\left[\frac{v_{\perp} U}{\omega-k_{\|} v_{\|}-n \Omega_{\mathrm{cs}}} \mathbf{T}_{n}\right]
\end{aligned}
$$

The susceptibility for a hot plasma with an arbitrary distribution function (Eq. 48 in Stix's book page 255)

Local coordinate frame ($\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$) with $\hat{\mathbf{z}}=\hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}}=0$ (Stix)

$$
\begin{aligned}
\chi_{\mathrm{s}} & =\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \hat{\mathbf{z}} \hat{\mathbf{z}} \frac{v_{\|}^{2}}{\omega}\left(\frac{1}{v_{\|}} \frac{\partial f}{\partial v_{\|}}-\frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}}\right)_{\mathrm{s}}+ \\
& +\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \sum_{n=-\infty}^{+\infty}\left[\frac{v_{\perp} U}{\omega-k_{\|} v_{\|}-n \Omega_{\mathrm{cs}}} \mathbf{T}_{n}\right]
\end{aligned}
$$

The susceptibility for a hot plasma with an arbitrary distribution function (Eq. 48 in Stix's book page 255)

Local coordinate frame ($\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$) with $\hat{\mathbf{z}}=\hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}}=0$ (Stix)

$$
\begin{aligned}
\boldsymbol{\chi}_{\mathrm{s}} & =\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \hat{\mathbf{z}} \mathbf{z} \frac{v_{\|}^{2}}{\omega}\left(\frac{1}{v_{\|}} \frac{\partial f}{\partial v_{\|}}-\frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}}\right)_{\mathrm{s}}+ \\
& +\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \sum_{n=-\infty}^{+\infty}\left[\frac{v_{\perp} U}{\omega-k_{\|} v_{\|}-n \Omega_{\mathrm{cs}}} \mathbf{T}_{n}\right]
\end{aligned}
$$

where

$$
U \equiv \frac{\partial f}{\partial v_{\perp}}+\frac{k_{\|}}{\omega}\left(v_{\perp} \frac{\partial f}{\partial v_{\|}}-v_{\|} \frac{\partial f}{\partial v_{\perp}}\right) \quad \text { and }
$$

The susceptibility for a hot plasma with an arbitrary distribution function (Eq. 48 in Stix's book page 255)

Local coordinate frame ($\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$) with $\hat{\mathbf{z}}=\hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}}=0$ (Stix)

$$
\begin{aligned}
\boldsymbol{\chi}_{\mathrm{s}} & =\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \hat{\mathbf{z}} \mathbf{z} \frac{v_{\|}^{2}}{\omega}\left(\frac{1}{v_{\|}} \frac{\partial f}{\partial v_{\|}}-\frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}}\right)_{\mathrm{s}}+ \\
& +\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \sum_{n=-\infty}^{+\infty}\left[\frac{v_{\perp} U}{\omega-k_{\|} v_{\|}-n \Omega_{\mathrm{cs}}} \mathbf{T}_{n}\right]
\end{aligned}
$$

where

$$
U \equiv \frac{\partial f}{\partial v_{\perp}}+\frac{k_{\|}}{\omega}\left(v_{\perp} \frac{\partial f}{\partial v_{\|}}-v_{\|} \frac{\partial f}{\partial v_{\perp}}\right) \quad \text { and }
$$

The susceptibility for a hot plasma with an arbitrary distribution function (Eq. 48 in Stix's book page 255)

Local coordinate frame ($\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$ with $\hat{\mathbf{z}}=\hat{\mathbf{b}}$ and $\mathbf{k} \cdot \hat{\mathbf{y}}=0$ (Stix)

$$
\begin{aligned}
\chi_{\mathrm{s}} & =\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \hat{\mathbf{z}} \mathbf{z} \frac{v_{\|}^{2}}{\omega}\left(\frac{1}{v_{\|}} \frac{\partial f}{\partial v_{\|}}-\frac{1}{v_{\perp}} \frac{\partial f}{\partial v_{\perp}}\right)_{\mathrm{s}}+ \\
& +\frac{\omega_{\mathrm{ps}}^{2}}{\omega} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} \int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \sum_{n=-\infty}^{+\infty}\left[\frac{v_{\perp} U}{\omega-k_{\|} v_{\|}-n \Omega_{\mathrm{cs}}} \mathbf{T}_{n}\right]
\end{aligned}
$$

where

$$
\begin{gathered}
U \equiv \frac{\partial f}{\partial v_{\perp}}+\frac{k_{\|}}{\omega}\left(v_{\perp} \frac{\partial f}{\partial v_{\|}}-v_{\|} \frac{\partial f}{\partial v_{\perp}}\right) \quad \text { and } \\
\mathbf{T}_{n}=\left(\begin{array}{ccc}
\frac{n^{2} J_{n}^{2}(z)}{z^{2}} & \frac{i n J_{n}(z) J_{n}^{\prime}(z)}{z} & \frac{n J_{n}^{2}(z) v_{\|}}{z v_{\perp}^{\prime}} \\
-\frac{i n J_{n}(z) J_{n}^{\prime}(z)}{z} & \left(J_{n}^{\prime}(z)\right)^{2} & -\frac{i J_{n}(z) J_{n}^{\prime}(z) v_{\|}}{v_{\perp}} \\
\frac{n J_{n}^{2}(z) v_{\|}}{z v_{\perp}} & \frac{i J_{n}(z) J_{n}^{\prime}(z) v_{\|}}{v_{\perp}} & \frac{J_{n}^{2}(z) v_{\|}^{2}}{v_{\perp}^{2}}
\end{array}\right), \quad z \equiv \frac{k_{\perp} v_{\perp}}{\Omega_{\mathrm{cs}}}
\end{gathered}
$$

Numerical evaluation of χ needed for arbitrary distribution

 function: χ is pre-computed- The "best" approach for a complete extension of the code is to implement directly the general expression for χ (previous slide)
- Plemelj's formula $\rightarrow \frac{1}{\omega-\omega_{0} \pm i 0}=\wp \frac{1}{\omega-\omega_{0}} \mp i \pi \delta\left(\omega-\omega_{0}\right)$
- Integrals in the expression for χ are computed numerous times in TORIC-HHFW so an efficient evaluation is essential
- Precomputation of χ :
- A set of N_{ψ} files is constructed, each containing the principal values and residues of χ for a single species on a uniform $\left(v_{\|}, B / B_{\text {min }}, N_{\perp}\right)$ mesh, for a specified flux surface ψ_{j}
- The distribution, $f\left(v_{\|}, v_{\perp}\right)$, is specified in functional form at the minimum field strength point $B(\theta)=B_{\text {min }}$ on ψ_{j}
- An interpolator returns the components of χ

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters:

$$
\begin{aligned}
& f=30 \times 10^{6} \mathrm{~Hz} ; n_{\text {dens }}=5 \times 10^{13} \mathrm{~cm}^{-3}, \\
& N_{\|}=10, B=0.5 \mathrm{~T}, T_{i}=20 \mathrm{keV} \\
& N_{\text {harmonics }}=10 \\
& \text { lon species: Deuterium } \\
& \text { Black curve: analytical solution }
\end{aligned}
$$

	$N_{v_{\\|}}$	$N_{v_{\perp}}$
-	100	50
-	200	100
-	324	150
-	650	300
-	1300	600
-	2600	1200

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters:

$$
\begin{aligned}
& f=30 \times 10^{6} \mathrm{~Hz} ; n_{\text {dens }}=5 \times 10^{13} \mathrm{~cm}^{-3}, \\
& N_{\|}=10, B=0.5 \mathrm{~T}, T_{i}=20 \mathrm{keV} \\
& N_{\text {harmonics }}=10 \\
& \text { lon species: Deuterium } \\
& \text { Black curve: analytical solution }
\end{aligned}
$$

	$N_{v_{\\|}}$	$N_{v_{\perp}}$
-	100	50
-	200	100
-	324	150
-	650	300
-	1300	600
-	2600	1200

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters:
$f=30 \times 10^{6} \mathrm{~Hz} ; n_{\text {dens }}=5 \times 10^{13} \mathrm{~cm}^{-3}$,
$N_{\|}=10, B=0.5 \mathrm{~T}, T_{i}=20 \mathrm{keV}$
$N_{\text {harmonics }}=10$
Ion species: Deuterium
Black curve: analytical solution

	$N_{v_{\\|}}$	$N_{v_{\perp}}$
-	100	50
-	200	100
-	324	150
-	650	300
-	1300	600
-	2600	1200

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters:

$$
\begin{aligned}
& f=30 \times 10^{6} \mathrm{~Hz} ; n_{\text {dens }}=5 \times 10^{13} \mathrm{~cm}^{-3}, \\
& N_{\|}=10, B=0.5 \mathrm{~T}, T_{i}=20 \mathrm{keV} \\
& N_{\text {harmonics }}=10 \\
& \text { lon species: Deuterium } \\
& \text { Black curve: analytical solution }
\end{aligned}
$$

	$N_{v_{\\|}}$	$N_{v_{\perp}}$
-	100	50
-	200	100
-	324	150
-	650	300
-	1300	600
-	2600	1200

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters:
$f=30 \times 10^{6} \mathrm{~Hz} ; n_{\text {dens }}=5 \times 10^{13} \mathrm{~cm}^{-3}$,
$N_{\|}=10, B=0.5 \mathrm{~T}, T_{i}=20 \mathrm{keV}$
$N_{\text {harmonics }}=10$
Ion species: Deuterium
Black curve: analytical solution

	$N_{v_{\\|}}$	$N_{v_{\perp}}$
-	100	50
-	200	100
-	324	150
-	650	300
-	1300	600
-	2600	1200

Good agreement between numerical and analytical evaluation of the full hot dielectric tensor

Parameters:

$$
\begin{aligned}
& f=30 \times 10^{6} \mathrm{~Hz} ; n_{\text {dens }}=5 \times 10^{13} \mathrm{~cm}^{-3} \\
& N_{\|}=10, B=0.5 \mathrm{~T}, T_{i}=20 \mathrm{keV} \\
& N_{\text {harmonics }}=10 \\
& \text { lon species: Deuterium } \\
& \text { Black curve: analytical solution }
\end{aligned}
$$

	$N_{v_{\\|}}$	$N_{v_{\perp}}$
-	100	50
-	200	100
-	324	150
-	650	300
-	1300	600
-	2600	1200

Outline

- Motivation
- TORIC v. 5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

NSTX case

Main parameters:

- TRANSP Run ID: 134909B01
- Plasma species: electron, D, D-NBI
- $B_{\mathrm{T}}=0.53 \mathrm{~T}$
- $I_{\mathrm{p}}=868 \mathrm{kA}$

- $T_{\mathrm{e}}(0)=1.09 \mathrm{keV}$
- $n_{\mathrm{e}}(0)=2.47 \times 10^{13} \mathrm{~cm}^{-3}$
- $T_{\mathrm{D}}(0)=1.1 \mathrm{keV}$
- $T_{\mathrm{D}-\mathrm{NBI}}(0)=21.37 \mathrm{keV}$
- $n_{\mathrm{D}-\mathrm{NBI}}(0)=2.01 \times 10^{12} \mathrm{~cm}^{-3}$
- TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$

Excellent agreement between numerical and analytical evaluation of HHFW fields in the midplane

$\operatorname{Re}\left(E_{-}\right)$

- Numerical

$$
N_{v_{\|}}=100, N_{v_{\perp}}=50
$$

$\operatorname{Re}\left(E_{+}\right)$
$\operatorname{Re}\left(E_{\|}\right)$

$\operatorname{Im}\left(E_{+}\right) \quad \operatorname{Im}\left(E_{\|}\right)$

Excellent agreement between numerical and analytical evaluation of the 2D HHFW fields

TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$
Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$
Maxw. analytical: $\operatorname{Re}\left(E_{-}\right)$
Maxw. numerical: $\operatorname{Re}\left(E_{-}\right)$

Excellent agreement between numerical and analytical evaluation of the 2D HHFW fields

TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$
Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$
Maxw. analytical: $\operatorname{Re}\left(E_{+}\right)$
Maxw. numerical: $\operatorname{Re}\left(E_{+}\right)$

Excellent agreement between numerical and analytical evaluation of the 2D HHFW fields

TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$
Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$

Maxw. analytical: $\operatorname{Re}\left(E_{\|}\right)$

Maxw. numerical: $\operatorname{Re}\left(E_{\|}\right)$

Excellent agreement in terms of absorbed power

$$
\begin{aligned}
& \text { TORIC resolution: } n_{\text {mod }}=31, n_{\text {elm }}=200 \\
& \text { Resolution used for } \chi: N_{v_{\|}}=100 \text { and } N_{v_{\perp}}=50
\end{aligned}
$$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D		
D-NBI		
Electrons		

Excellent agreement in terms of absorbed power

> TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$ Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22%	
D-NBI		
Electrons		

Excellent agreement in terms of absorbed power

> TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$ Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22%	0.22%
D-NBI		
Electrons		

Excellent agreement in terms of absorbed power

TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$ Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22%	0.22%
D-NBI	73.88%	
Electrons		

Excellent agreement in terms of absorbed power

TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$ Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22%	0.22%
D-NBI	73.88%	73.58%
Electrons		

Excellent agreement in terms of absorbed power

TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$ Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22%	0.22%
D-NBI	73.88%	73.58%
Electrons	25.90%	

Excellent agreement in terms of absorbed power

TORIC resolution: $n_{\text {mod }}=31, n_{\text {elm }}=200$ Resolution used for $\chi: N_{v_{\|}}=100$ and $N_{v_{\perp}}=50$

Absorbed fraction	Maxw. analytical	Maxw. numerical
D	0.22%	0.22%
D-NBI	73.88%	73.58%
Electrons	25.90%	26.21%

Outline

- Motivation
- TORIC v. 5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor - Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

P2F code: from a particles list to a distribution function

- P2F code was developed by D. L. Green (ORNL)
- P2F takes a particle list and creates a 4D $\left(R, z ; v_{\|}, v_{\perp}\right)$ distribution function for use in a continuum code like TORIC
- At present it has essentially three modes:
- The first really is a straight up 4D histogram giving a noisy distribution
- The second uses Gaussian shape particles in velocity space to give smooth velocity space distributions at each point in space
- The third is to distribute each particle along its orbit according to the percentage of bounce time giving even better statistics
- Tested P2F code starting with a particles list representing a Maxwellian:
- Excellent agreement between the input kinetic profiles and the corresponding ones obtained from the distribution generated by P2F code

P2F code: from a particles list to a distribution function

- P2F code was developed by D. L. Green (ORNL)
- P2F takes a particle list and creates a 4D $\left(R, z ; v_{\|}, v_{\perp}\right)$ distribution function for use in a continuum code like TORIC
- At present it has essentially three modes:
- The first really is a straight up 4D histogram giving a noisy distribution
- The second uses Gaussian shape particles in velocity space to give smooth velocity space distributions at each point in space
- The third is to distribute each particle along its orbit according to the percentage of bounce time giving even better statistics
- Tested P2F code starting with a particles list representing a Maxwellian:
- Excellent agreement between the input kinetic profiles and the corresponding ones obtained from the distribution generated by P2F code

Outline

- Motivation
- TORIC v. 5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

$$
\begin{aligned}
& n_{\mathrm{e}}(\rho=0)=2.5 \times 10^{13} \mathrm{~cm}^{-3} \\
& n_{\mathrm{e}}(\rho=1)=2.5 \times 10^{12} \mathrm{~cm}^{-3} \\
& T_{\mathrm{e}}(\rho=0)=1 \mathrm{keV} ; T_{\mathrm{e}}(\rho=1)=0.1 \mathrm{keV} \\
& n_{\mathrm{FI}}(\rho=0)=2.0 \times 10^{12} \mathrm{~cm}^{-3} \\
& n_{\mathrm{FI}}(\rho=1)=2.0 \times 10^{11} \mathrm{~cm}^{-3} \\
& T_{\mathrm{FI}}(\rho=1)=20 \mathrm{keV} ; T_{\mathrm{e}}(\rho=1)=5 \mathrm{keV} \\
& \text { Parabolic profiles for } n_{\mathrm{e}}, T_{\mathrm{e}}, \text { and } n_{\mathrm{FI}} \\
& T_{\mathrm{FI}}(\rho)=\left(T_{\mathrm{FI}, 0}-T_{\mathrm{FI}, 1}\right)\left(1-\rho^{2}\right)^{5}+T_{\mathrm{FI}, 1}
\end{aligned}
$$

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

_工 Standard TORIC
_ 2k particles

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

—_ Standard TORIC
——2k particles
—— 5k particles
——10k particles

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

TORIC + non-Maxw. + P2F code: test on Maxwellian case

Procedure:

1. generate particle list representing a Maxwellian
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

Standard TORIC
 _ 2k particles
 —— 5k particles
 _ 10k particles
 _ 100k particles
 _ 1M particles

Total power differs by less than 1% among 10k, 100k, and 1 M cases

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian exiension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

Bi-Maxwellian distribution

$$
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)=(2 \pi)^{-3 / 2}\left(v_{\mathrm{th}, \|} v_{\mathrm{th}, \perp}^{2}\right)^{-1} \exp \left[-\left(v_{\|} / v_{\mathrm{th}, \|}\right)^{2}-\left(v_{\perp} / v_{\mathrm{th}, \perp}\right)^{2}\right]
$$

with $v_{\text {th }, \|}=\sqrt{2 C_{\|} T(\psi) / m_{\mathrm{D}}}, v_{\text {th }, \perp}=\sqrt{2 C_{\perp} T(\psi) / m_{\mathrm{D}}}$, with constants $C_{\|}$and C_{\perp}

- For $C_{\perp}=1$ and $C_{\|}=\{.5,1 ., 3 ., 5\},. P_{\mathrm{D}-\mathrm{NBI}}$, varied by less than 1%

Bi-Maxwellian distribution

$$
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)=(2 \pi)^{-3 / 2}\left(v_{\mathrm{th}, \|} v_{\mathrm{th}, \perp}^{2}\right)^{-1} \exp \left[-\left(v_{\|} / v_{\mathrm{th}, \|}\right)^{2}-\left(v_{\perp} / v_{\mathrm{th}, \perp}\right)^{2}\right]
$$

with $v_{\text {th }, \|}=\sqrt{2 C_{\|} T(\psi) / m_{\mathrm{D}}}, v_{\text {th }, \perp}=\sqrt{2 C_{\perp} T(\psi) / m_{\mathrm{D}}}$, with constants $C_{\|}$and C_{\perp}

- For $C_{\perp}=1$ and $C_{\|}=\{.5,1 ., 3 ., 5\},. P_{\mathrm{D}-\mathrm{NBI}}$, varied by less than 1%
- for small $C_{\|}$, the absorption profile tends to be localized to the resonant layers

Bi-Maxwellian distribution

$$
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)=(2 \pi)^{-3 / 2}\left(v_{\mathrm{th}, \|} v_{\mathrm{th}, \perp}^{2}\right)^{-1} \exp \left[-\left(v_{\|} / v_{\mathrm{th}, \|}\right)^{2}-\left(v_{\perp} / v_{\mathrm{th}, \perp}\right)^{2}\right]
$$

with $v_{\text {th, } \|}=\sqrt{2 C_{\|} T(\psi) / m_{\mathrm{D}}}, v_{\text {th }, \perp}=\sqrt{2 C_{\perp} T(\psi) / m_{\mathrm{D}}}$, with constants $C_{\|}$and C_{\perp}

- For $C_{\perp}=1$ and $C_{\|}=\{.5,1 ., 3 ., 5\},. P_{\mathrm{D}-\mathrm{NBI}}$, varied by less than 1%
- for small $C_{\|}$, the absorption profile tends to be localized to the resonant layers

- For $C_{\|}=1$ and $C_{\perp}=\{.5,1 ., 3.5$.$\} , the corresponding P_{D-N B I}=\{70.06,73.56,62.84,48.48\}$

Bi-Maxwellian distribution

$$
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)=(2 \pi)^{-3 / 2}\left(v_{\mathrm{th}, \|} v_{\mathrm{th}, \perp}^{2}\right)^{-1} \exp \left[-\left(v_{\|} / v_{\mathrm{th}, \|}\right)^{2}-\left(v_{\perp} / v_{\mathrm{th}, \perp}\right)^{2}\right]
$$

with $v_{\text {th, } \|}=\sqrt{2 C_{\|} T(\psi) / m_{\mathrm{D}}}, v_{\text {th }, \perp}=\sqrt{2 C_{\perp} T(\psi) / m_{\mathrm{D}}}$, with constants $C_{\|}$and C_{\perp}

- For $C_{\perp}=1$ and $C_{\|}=\{.5,1 ., 3 ., 5\},. P_{\mathrm{D}-\mathrm{NBI}}$, varied by less than 1%
- for small $C_{\|}$, the absorption profile tends to be localized to the resonant layers

- For $C_{\|}=1$ and $C_{\perp}=\{.5,1 ., 3 ., 5$.$\} , the corresponding P_{\mathrm{D}-\mathrm{NBI}}=\{70.06,73.56,62.84,48.48\}$

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

Slowing-down distribution

$$
\begin{array}{r}
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)= \begin{cases}\frac{A}{v_{\mathrm{c}}^{3}} \frac{1}{1+\left(v / v_{\mathrm{c}}\right)^{3}} & \text { for } v<v_{\mathrm{m}}, \quad v_{\mathrm{m}} \equiv \sqrt{2 E_{\mathrm{D}-\mathrm{NBI}} / m_{\mathrm{D}}} \\
0 & \text { for } v>v_{\mathrm{m}}\end{cases} \\
A=3 /\left[4 \pi \ln \left(1+\delta^{-3}\right)\right], \quad \delta \equiv \frac{v_{\mathrm{c}}}{v_{\mathrm{m}}}, \quad v_{\mathrm{c}}=3 \sqrt{\pi}\left(m_{\mathrm{e}} / m_{\mathrm{D}}\right) Z_{\mathrm{eff}} v_{\mathrm{th}}^{3}, \quad Z_{\mathrm{eff}} \equiv \sum_{\mathrm{ions}} \frac{Z_{\mathrm{i}}^{2} n_{\mathrm{i}}}{n_{\mathrm{e}}}
\end{array}
$$

$$
\text { For } Z_{\mathrm{eff}}=2 \text { and } E_{\mathrm{D}-\mathrm{NBI}}=30,60,90,120 \mathrm{keV} \Longrightarrow P_{\mathrm{D}-\mathrm{NBI}}=\{77.84 \%, 75.85 \%, 70.97 \%, 64.71 \%\}
$$

Slowing-down distribution

$$
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)=\left\{\begin{array}{ll}
\frac{A}{v_{\mathrm{c}}^{3}} \frac{1}{1+\left(v / v_{\mathrm{c}}\right)^{3}} & \text { for } v<v_{\mathrm{m}}, \\
0 & \text { for } v>v_{\mathrm{m}}
\end{array} \quad v_{\mathrm{m}} \equiv \sqrt{2 E_{\mathrm{D}-\mathrm{NBI}} / m_{\mathrm{D}}}\right.
$$

$$
A=3 /\left[4 \pi \ln \left(1+\delta^{-3}\right)\right], \quad \delta \equiv \frac{v_{\mathrm{c}}}{v_{\mathrm{m}}}, \quad v_{\mathrm{c}}=3 \sqrt{\pi}\left(m_{\mathrm{e}} / m_{\mathrm{D}}\right) Z_{\mathrm{eff}} v_{\mathrm{th}}^{3}, \quad Z_{\mathrm{eff}} \equiv \sum_{\mathrm{ions}} \frac{Z_{\mathrm{i}}^{2} n_{\mathrm{i}}}{n_{\mathrm{e}}}
$$

For $Z_{\text {eff }}=2$ and $E_{\mathrm{D}-\mathrm{NBI}}=30,60,90,120 \mathrm{keV} \Longrightarrow P_{\mathrm{D}-\mathrm{NBI}}=\{77.84 \%, 75.85 \%, 70.97 \%, 64.71 \%\}$

- Similar behavior when varied C_{\perp} in the bi-Maxwellian case
- Fast ions absorption should decrease with something like $T_{\text {fast ions }}^{-3 / 2}$

Slowing-down distribution

$$
f_{\mathrm{D}}\left(v_{\|}, v_{\perp}\right)= \begin{cases}\frac{A}{v_{\mathrm{c}}^{3}} \frac{1}{1+\left(v / v_{\mathrm{c}}\right)^{3}} & \text { for } v<v_{\mathrm{m}}, \quad v_{\mathrm{m}} \equiv \sqrt{2 E_{\mathrm{D}-\mathrm{NBI}} / m_{\mathrm{D}}} \\ 0 & \text { for } v>v_{\mathrm{m}}\end{cases}
$$

$$
A=3 /\left[4 \pi \ln \left(1+\delta^{-3}\right)\right], \quad \delta \equiv \frac{v_{\mathrm{c}}}{v_{\mathrm{m}}}, \quad v_{\mathrm{c}}=3 \sqrt{\pi}\left(m_{\mathrm{e}} / m_{\mathrm{D}}\right) Z_{\mathrm{eff}} v_{\mathrm{th}}^{3}, \quad Z_{\mathrm{eff}} \equiv \sum_{\mathrm{ions}} \frac{Z_{\mathrm{i}}^{2} n_{\mathrm{i}}}{n_{\mathrm{e}}}
$$

For $Z_{\text {eff }}=2$ and $E_{\mathrm{D}-\mathrm{NBI}}=30,60,90,120 \mathrm{keV} \Longrightarrow P_{\mathrm{D}-\mathrm{NBI}}=\{77.84 \%, 75.85 \%, 70.97 \%, 64.71 \%\}$

- Similar behavior when varied C_{\perp} in the bi-Maxwellian case
- Fast ions absorption should decrease with something like $T_{\text {fast ions }}^{-3 / 2}$

Outline

- Motivation
- TORIC v.5: brief code description
- Non-Maxwellian extension of TORIC v. 5 in HHFW heating regime
- Test I: Numerical vs. analytical Maxwellian full hot dielectric tensor
- Test II: TORIC wave solution: numerical vs. analytical Maxw. case
- P2F code: from a particles list to a continuum distribution function
- Test I: TORIC wave solution: particle list + P2F for a Maxw. case
- Initial applications
- Bi-Maxwellian distribution
- Slowing-down distribution
- from a NUBEAM particles list (preliminary \& still in progress)
- Conclusions
- Future steps

NUBEAM particles list (tests in progress)

$$
\begin{aligned}
& \text { NSTX shot } 117929 \\
& P_{\text {HHFW }}=2.9 \mathrm{MW} \\
& P_{\text {NBI }}=2 \mathrm{MW} \\
& I_{\mathrm{P}}=300 \mathrm{kA} \\
& \text { TAE \& GAE suppressed } \\
& \text { particles number }=3344
\end{aligned}
$$

NUBEAM particles list (tests in progress)

Procedure:

1. get nUBEAM particle list
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

NSTX shot 117929
$P_{\text {HHFW }}=2.9 \mathrm{MW}$
$P_{\mathrm{NBI}}=2 \mathrm{MW}$
$I_{\mathrm{P}}=300 \mathrm{kA}$
TAE \& GAE suppressed
particles number $=3344$

NUBEAM particles list (tests in progress)

Procedure:

1. get nUBEAM particle list
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

NSTX shot 117929
$P_{\text {HHFW }}=2.9 \mathrm{MW}$
$P_{\mathrm{NBI}}=2 \mathrm{MW}$
$I_{\mathrm{P}}=300 \mathrm{kA}$
TAE \& GAE suppressed
particles number $=3344$

- Need to start a case adding low $P_{\text {HHFw }}$ and then increase it

NUBEAM particles list (tests in progress)

Procedure:

1. get nUBEAM particle list
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

NSTX shot 117929
$P_{\text {HHFW }}=2.9 \mathrm{MW}$
$P_{\mathrm{NBI}}=2 \mathrm{MW}$
$I_{\mathrm{P}}=300 \mathrm{kA}$
TAE \& GAE suppressed
particles number $=3344$

- Need to start a case adding low PhHfw and then increase it

NUBEAM particles list (tests in progress)

Procedure:

1. get nUBEAM particle list
2. run P2F to obtain a distribution function, f
3. pre-compute χ with f above
4. run TORIC with pre-computed χ
5. compare TORIC run with standard TORIC

NSTX shot 117929
$P_{\text {HHFW }}=2.9 \mathrm{MW}$
$P_{\text {NBI }}=2 \mathrm{MW}$
$I_{\mathrm{P}}=300 \mathrm{kA}$
TAE \& GAE suppressed
particles number $=3344$

- Need to start a case adding low $P_{\text {HHFW }}$ and then increase it

Conclusions

- A generalization of the full wave TORIC v. 5 code in the high harmonic and minority heating regimes has been implemented to include species with arbitrary velocity distribution functions
- Implementation of the full hot dielectric tensor reproduces the analytic Maxwellian case
- Non-Maxwellian extension of TORIC in HHFW regime reproduces previous simulations with both a specified functional form of the distribution functions and a particle list
- For a bi-Maxwellian distribution, the fast ions absorbed power is insensitive to variations in $T_{\|}$, but varies with changes in T_{\perp}
- For slowing down distribution, the fast ions absorbed power varies with changes in $E_{\text {NBI }}$
$-P_{\mathrm{D}-\mathrm{NBI}}$ decreases with increasing E_{NBI}
- First attempts to apply TORIC generalization with a NUBEAM particle list
- preliminary results with arbitrary distribution functions appears significantly different than Maxw. case results
- still additional tests/checks needed

Future steps

For HHFW regime:

- Add options to read a distribution function from CQL3D Fokker-Planck code for HHFW heating regime
- Use the distribution function from CQL3D to include, for instance, finite orbit effects
- Possible comparison with FIDA data as done previously by D. Liu \& R. Harvey
- Further NSTX/NSTX-U applications/tests using a NUBEAM particle list and comparison with slowing down distribution function
- Attempts to apply this extension in a self-consistent way with the NUBEAM module
- Need first some tests to the kick-operator implemented in NUBEAM
- the quasilinear diffusion coefficients has been recently derived and implemented in TORIC v. 5 (work done by Jungpyo Lee from MIT)

Future steps

For HHFW regime:

- Add options to read a distribution function from CQL3D Fokker-Planck code for HHFW heating regime
- Use the distribution function from CQL3D to include, for instance, finite orbit effects
- Possible comparison with FIDA data as done previously by D. Liu \& R. Harvey
- Further NSTX/NSTX-U applications/tests using a NUBEAM particle list and comparison with slowing down distribution function
- Attempts to apply this extension in a self-consistent way with the NUBEAM module
- Need first some tests to the kick-operator implemented in NUBEAM

For IC minority regime (in collaboration with J. Lee, J. Wright, and P. Bonoli)

- the quasilinear diffusion coefficients has been recently derived and implemented in TORIC v. 5 (work done by Jungpyo Lee from MIT)
- Necessary to couple TORIC v. 5 and CQL3D
- Able to iterate the extension of TORIC v. 5 with the quasilinear coefficients routine and CQL3D
- Tests underway on the evaluation of the quasilinear diffusion coefficients

TORIC code: additional info

- Spectral ansatz $\mathbf{E}(\mathbf{r}, t)=\sum_{m, n} \mathbf{E}^{m n}(\psi) e^{i(m \theta+n \phi-\omega t)}$

$$
m \rightarrow \text { poloidal mode number; } n \rightarrow \text { toroidal mode number }
$$

- For each toroidal component one has to solve a (formally infinite) system of coupled ordinary differential equations for the physical components of $E^{m n}(\psi)$, written in the local field-aligned orthogonal basis vectors.
- The Spectral Ansatz transforms the θ-integral of the constitutive relation into a convolution over poloidal modes.
- Due to the toroidal axisymmetry, the wave equations are solved separately for each toroidal Fourier component.
- A spectral decomposition defines an accurate representation of the "local" parallel wave-vector $k_{\|}^{m}=(m \nabla \theta+n \nabla \phi) \cdot \hat{\mathbf{b}}$
- The ψ variation is represented by Hermite cubic finite elements
- Principal author M. Brambilla (IPP Garching, Germany)

The susceptibility for a hot plasma with a Maxwellian distribution function can be evaluated analitically

4 back

$$
\chi_{\mathrm{s}}=\left[\hat{\mathbf{z}} \hat{\mathbf{z}} \frac{2 \omega_{\mathrm{p}}^{2}}{\omega k_{\|} v_{\mathrm{th}}^{2}}\left\langle v_{\|}\right\rangle+\frac{\omega_{\mathrm{p}}^{2}}{\omega} \sum_{n=-\infty}^{+\infty} e^{-\lambda} \mathbf{Y}_{n}(\lambda)\right]_{s}
$$

where

$$
\begin{gathered}
\mathbf{Y}_{n}=\left(\begin{array}{ccc}
\frac{n^{2} I_{n}}{\lambda} A_{n} & -i n\left(I_{n}-I_{n}^{\prime}\right) A_{n} & \frac{k_{\perp}}{\omega_{c}} \frac{n I_{n}}{\lambda} B_{n} \\
i n\left(I_{n}-I_{n}^{\prime}\right) A_{n} & \left(\frac{n^{2}}{\lambda} I_{n}+2 \lambda I_{n}-2 \lambda I_{n}^{\prime}\right) A_{n} & \frac{i k_{\perp}}{\omega_{c}}\left(I_{n}-I_{n}^{\prime}\right) B_{n} \\
\frac{k_{\perp}}{\omega_{c}} \frac{n I_{n}}{\lambda} B_{n} & -\frac{i k_{\perp}}{\omega_{c}}\left(I_{n}-I_{n}^{\prime}\right) B_{n} & \frac{2\left(\omega-n \omega_{c}\right)}{k_{\|} v_{\mathrm{th}}^{2}} I_{n} B_{n}
\end{array}\right) \\
A_{n}=\frac{1}{k_{\|} v_{\mathrm{th}}} Z_{0}\left(\zeta_{n}\right), \quad B_{n}=\frac{1}{k_{\|}}\left(1+\zeta_{n} Z_{0}\left(\zeta_{n}\right)\right), \quad Z_{0}\left(\zeta_{n}\right) \equiv \text { plasma dispersion func. } \\
\zeta_{n} \equiv \frac{\omega-n \omega_{c}}{k_{\|} v_{\mathrm{th}}}, \quad \lambda \equiv \frac{k_{\perp}^{2} v_{\mathrm{th}}^{2}}{2 \Omega_{\mathrm{c}}^{2}}
\end{gathered}
$$

P2F code: test on Maxwellian case

NSTX shot 117929 from Fredrickson et al. NF 2015

Finite elements to use to compute the resonant integrals

- We need to evaluate integrals of the form

$$
I_{k}=\int \mathrm{d} v \frac{C(v)}{v-v_{k}}
$$

- Since I_{k} is a smooth function of v_{k}, evaluate on a uniform mesh $v_{k}=k \Delta v$, and interpolate
- Express smooth integrand $C(v)$ in terms of (linear) finite elements $C(v)=\sum_{j} c_{j} T_{j}$, with T_{j} centered at v_{j}

Then

$$
I_{k}=\sum_{j} \int \mathrm{~d} v \frac{c_{j} T_{j}}{v-v_{k}}=\sum_{j} c_{j} K_{j-k}=\sum_{j} c_{j+k} K_{j}
$$

where the kernel is given by

$$
K_{j}=\int_{-1}^{1} \mathrm{~d} v \frac{1-|v|}{v+j \Delta v}= \begin{cases}\ln \left(\frac{j+1}{j-1}\right)-j \ln \left(\frac{j^{2}}{j^{2}-1}\right), & |j|>1 \\ \pm \ln 4, & j= \pm 1 \\ i \pi, & j=0\end{cases}
$$

Beyond Maxwellian

FLR non-Maxwellian susceptibility in a local coordinate (Stix) frame $(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}})$, with $\hat{\mathbf{z}}=\hat{\mathbf{b}}, \mathbf{k} \cdot \hat{\mathbf{y}}=0$, to second order in $k_{\perp} v_{\perp} / \omega_{\mathrm{c}}$

$$
\begin{aligned}
\chi_{x x} & =\frac{\omega_{\mathrm{p}, \mathrm{~s}}^{2}}{\omega}\left[\frac{1}{2}\left(A_{1,0}+A_{-1,0}\right)-\frac{\lambda}{2}\left(A_{1,1}+A_{-1,1}\right)+\frac{\lambda}{2}\left(A_{2,1}+A_{-2,1}\right)\right] \\
\chi_{x y} & =-\chi_{y x}=i \frac{\omega_{\mathrm{p}, \mathrm{~s}}^{2}}{\omega}\left[\frac{1}{2}\left(A_{1,0}-A_{-1,0}\right)-\lambda\left(A_{1,1}-A_{-1,1}\right)+\frac{\lambda}{2}\left(A_{2,1}-A_{-2,1}\right)\right] \\
\chi_{x z} & =+\chi_{z x}=-\chi_{y x}=\frac{\omega_{\mathrm{p}, \mathrm{~s}}}{\omega}\left(\frac{1}{2} \frac{k_{\perp}}{\omega}\right)\left[\left(B_{1,0}+B_{-1,0}\right)-\lambda\left(B_{1,1}+B_{-1,1}\right)+\frac{\lambda}{2}\left(B_{2,1}+B_{-2,1}\right)\right] \\
\chi_{y y} & =\frac{\omega_{\mathrm{p}, \mathrm{~s}}^{2}}{\omega}\left[2 \lambda A_{0,1}+\frac{1}{2}\left(A_{1,0}+A_{-1,0}\right)-\frac{3 \lambda}{2}\left(A_{1,1}+A_{-1,1}\right)+\frac{\lambda}{2}\left(A_{2,1}+A_{-2,1}\right)\right] \\
\chi_{y z} & =-\chi_{z y}=i \frac{\omega_{\mathrm{p}, \mathrm{~s}}^{2}}{\omega}\left(\frac{k_{\perp}}{\omega}\right)\left[B_{0,0}-\lambda B_{0,1}-\frac{1}{2}\left(B_{1,0}+B_{-1,0}\right)-\lambda\left(B_{1,1}+B_{-1,1}\right)\right. \\
& \left.-\frac{\lambda}{4}\left(B_{2,1}+B_{-2,1}\right)\right] \\
\chi_{z z} & =\frac{2 \omega_{\mathrm{p}}^{2}}{k_{\|} w_{\perp}^{2}}\left[(1-\lambda) B_{0,0}+\int_{-\infty}^{+\infty} \mathrm{d} v_{\|} \int_{0}^{+\infty} \mathrm{d} v_{\perp} v_{\perp} \frac{v_{\|}}{\omega} f_{0}\left(v_{\|}, v_{\perp}\right)\right] \\
& +\frac{\lambda}{2} \frac{\omega_{\mathrm{p}}^{2}}{\omega}\left[2 \frac{\omega-\omega_{\mathrm{c}}}{k_{\|} w_{\perp}^{2}} B_{1,0}+2 \frac{\omega+\omega_{\mathrm{c}}}{k_{\|} w_{\perp}^{2}} B_{-1,0}\right]
\end{aligned}
$$

Beyond Maxwellian (2)

Evaluations of the FLR susceptibility requires computation of two functions $A_{n, j} B_{n, j}$, for $n=-2 \ldots 2, j=0,1$, which are v_{\perp} moments of resonant integrals of $f_{0}\left(\psi, \frac{B}{B_{\text {min }}}, v_{\|}, v_{\perp}\right)$

$$
\left\{\begin{array}{l}
A_{n, j} \\
B_{n, j}
\end{array}\right\}=\int_{-\infty}^{\infty} \mathrm{d} v_{\|}\left\{\begin{array}{c}
1 \\
v_{\|}
\end{array}\right\} \frac{1}{\omega-k_{\|} v_{\|}-n \omega_{\mathrm{c}}} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp} H_{j}\left(v_{\|}, v_{\perp}\right)
$$

with
and

$$
\begin{aligned}
H_{0}\left(v_{\|}, v_{\perp}\right) & =\frac{1}{2} \frac{k_{\|} w_{\perp}^{2}}{\omega} \frac{\partial f_{0}}{\partial v_{\|}}-\left(1-\frac{k_{\|} v_{\|}}{\omega}\right) f_{0}\left(v_{\|}, v_{\perp}\right) \\
H_{0}\left(v_{\|}, v_{\perp}\right) & =\frac{1}{2} \frac{k_{\|} w_{\perp}^{2}}{\omega} \frac{\partial f_{0}}{\partial v_{\|}} \frac{v_{\perp}^{4}}{w_{\perp}^{4}}-\left(1-\frac{k_{\|} v_{\|}}{\omega}\right) f_{0}\left(v_{\|}, v_{\perp}\right) \frac{v_{\perp}^{2}}{w_{\perp}^{2}} \\
w_{\perp}^{2} & \equiv \int_{-\infty}^{\infty} \mathrm{d} v_{\|} \int_{0}^{+\infty} 2 \pi v_{\perp} \mathrm{d} v_{\perp}^{2} f_{0}\left(v_{\|}, v_{\perp}\right)
\end{aligned}
$$

Alcator C-Mod case

4 back

Main parameters:

- Plasma species: electron, D, and minority H (4\%)
- $B_{\mathrm{T}}=5 \mathrm{~T}$
- $I_{\mathrm{p}}=1047 \mathrm{kA}$
- $q(0)=0.885$
- q at plasma edge $=4.439$
- $T_{\mathrm{e}}(0)=2.764 \mathrm{keV}$
- $n_{\mathrm{e}}(0)=1.778 \times 10^{14} \mathrm{~cm}^{-3}$
- $T_{\mathrm{D}, \mathrm{H}}(0)=2.212 \mathrm{keV}$
- TORIC resolution:

$$
n_{\mathrm{mod}}=255, n_{\mathrm{elm}}=480
$$

Excellent agreement between numerical and analytical evaluation of the electric field

TORIC resolution: $n_{\text {mod }}=255, n_{\text {elm }}=480$
Maxw. analytical: $\operatorname{Re}\left(E_{-}\right)$
Maxw. numerical: $\operatorname{Re}\left(E_{-}\right)$

Excellent agreement between numerical and analytical evaluation of the electric field

TORIC resolution: $n_{\text {mod }}=255, n_{\text {elm }}=480$

Maxw. analytical: $\operatorname{Re}\left(E_{+}\right)$
Maxw. numerical: $\operatorname{Re}\left(E_{+}\right)$

Excellent agreement between numerical and analytical evaluation of the electric field

TORIC resolution: $n_{\text {mod }}=255, n_{\text {elm }}=480$
Maxw. analytical: $\operatorname{Re}\left(E_{\|}\right)$
Maxw. numerical: $\operatorname{Re}\left(E_{\|}\right)$

Excellent agreement in terms of absorbed power

TORIC resolution: $n_{\text {mod }}=255, n_{\text {elm }}=480$

Absorbed fraction	Maxw. analytical	Maxw. numerical
2nd Harmonic D	10.18	10.28
Fundamental H	69.95	68.81
Electrons - FW	11.35	11.91
Electrons -IBW	8.53	9.00

Bi-Maxwellian distribution

4 back

$$
f_{\mathrm{H}}\left(v_{\|}, v_{\perp}\right)=(2 \pi)^{-3 / 2}\left(v_{\mathrm{th}, \|} v_{\mathrm{th}, \perp}^{2}\right)^{-1} \exp \left[-\left(v_{\|} / v_{\mathrm{th}, \|}\right)^{2}-\left(v_{\perp} / v_{\mathrm{th}, \perp}\right)^{2}\right]
$$

with $v_{\text {th }, \|}=\sqrt{2 C_{\|} T(\psi) / m_{\mathrm{H}}}, v_{\text {th }, \perp}=\sqrt{2 C_{\perp} T(\psi) / m_{\mathrm{H}}}$, with constants $C_{\|}$and C_{\perp}

- For $C_{\|}=1$ and $C_{\perp}=\{.5,1 ., 3 ., 5\},. P_{\mathrm{H}}$, varied by less than 2%
- For $C_{\perp}=1$ and $C_{\|}=\{.5,1 ., 3 ., 5$.$\} , the corresponding P_{\mathrm{H}}=\{61.27 \%, 70.50 \%, 90.46 \%, 94.18 \%\}$
- for small $C_{\|}$, the absorption profile is localized to the resonant layer
- for large $C_{\|}$, the absorption profile is significantly broadened radially

$$
C_{\perp}=1, C_{\|}=0.5
$$

$$
C_{\perp}=1, C_{\|}=1
$$

$$
C_{\perp}=1, C_{\|}=5.0
$$

