

Analysis of Beam Blips

W. Heidbrink, D. Liu, D. Darrow and the NSTX-U Team

Monday Physics Meeting 4/25/2016

Inject beam blips in a low-density, L-mode plasma

- Low voltage on the beams
- Inner wall limiter
- Not much MHD
- Use scintillator signal for time evolution
- Cross calibrate to absolutely calibrated fission detector

Neutrons measure the total number of highenergy beam ions

•Beam-target reactions dominate in all of these discharges

Beam-Blip Technique Measures Prompt & Delayed Losses

• Rise depends on number of confined beam ions injected

• Decay depends on slowing down & losses on t_s fimescale

• Excellent fits to model equations for all of these data

Nucl. Fusion 43 (2003) 883.

Rise depends on n_d profile; decay depends on t_s profile

- Expect small difference between beams in normalized rise
- Expect off-axis decay time to be shorter for beams with orbits in outer part of plasma
- •TRANSP should account for these variations

The rise is smaller and the decay is faster than predicted

- Experimental rise is smaller than TRANSP predicts
- Experimental decay is usually shorter than TRANSP predicts
- Assumed Zeff=1.5 in all TRANSP runs
- Classical simulations (no ad hoc fast-ion diffusion)
- T_i=T_e (no effect)
- EFIT01
- Namelist options have weak effect

The decay agrees better when the decay time is short

- Weak dependence of normalized rise on density
- Strong correlation of normalized decay with density (r = 0.68)
- A density calibration error can <u>not</u> explain the discrepancy
- Bigger decay discrepancy for large τ↓s -- could be cause by anomalous losses

The rise has an unexpected temperature dependence

- Weak dependence of decay on T_e
- Strong dependence of normalized rise on T_e

(r = -0.60)

Similar results for all 4 sources

Source	Rise	Decay
1B	0.55	0.88
1C	0.60	0.88
2A	0.58	0.88
2C	0.58	0.72

- Suggests TRANSP modeling of beam physics is OK
- Suggests a common source of rise discrepancy

What causes the rise discrepancy?

Source	Rise	Decay
1B	0.55	0.88
1C	0.60	0.88
2A	0.58	0.88
2C	0.58	0.72

- <u>Zeff</u> But assuming Zeff=1.5 \rightarrow n_d/n_e= 0.9
- <u>Density</u> But increasing n_e makes decay discrepancy worse
- <u>Neutron Calibration</u> Need ~40% increase
- Full-energy Injected Current i.e., Beam power or species mix
- Large "Prompt" Fast-ion Losses Waveform shape in excellent agreement with model → ions must escape in < 1 ms
- Equilibrium

What causes the decay discrepancy?

Source	Rise	Decay
1B	0.55	0.88
1C	0.60	0.88
2A	0.58	0.88
2C	0.58	0.72

- <u>Density</u> But decreasing n_e makes rise discrepancy worse
- Electron Temperature Unlikely since short $\tau \downarrow s$ agrees
- Equilibrium
- <u>Fast-ion Losses on 10 ms timescale</u> Huge edge neutral density, error fields, MHD, ...

Tentative Conclusions

- Triple check neutron calibration
- Blips from all sources and at full voltage (species mix more reliable at 90 keV)
- Correlation with MHD, error fields, ...
- Agree with Kaye's conclusion: Something is wrong.