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[P. B. Snyder et al., POP 2009]

[U. Stroth, 2011]

[G. Huysmans, PPCF 2005]

• P-B gives a ‘hard’ limit for the 
edge pressure
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(2) Pedestal gradient is clamped and 
height and width evolve along the 
KBM limit

(3) ELM crash when P-B (‘hard’) limit 
is reached 

• Limitation of pedestal evolution (‘soft 
limit’) observed in several experiments

[A. Burckhart et al., PPCF 2010]
[D. Dickinson et al., PRL 2012]
[A. Diallo et al., PRL 2014]
[A. Diallo et al., POP 2015]
[X. Gao et al., NF 2015]
[X. Zhong et al., PPCF 2016]

(1)

(2)
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[A. Burckhart et al., PPCF 2010]

ASDEX Upgrade
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• ELMs are quasi-periodic events
 Increase amount of data by 

averaging over several ‘equal’ 
ELMs

• Procedure:
• Determination of individual 

ELM onset
• Collapse time base relative to 

ELM onset

• Statistically significant effects 
are conserved
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• ne and Te recover on different timescales
• First, max(∇ ne) recovery, then max(∇Te)

• max(∇Te) established several milliseconds
before onset of ELM crash

[A. Burckhart et al., PPCF 2010]

ASDEX Upgrade



…in the US…
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[A. Diallo et al., PRL 2014]

• Magnetic fluctuations when pedestal 
top Te is recovered

[A. Diallo et al., POP 2015]

DIII-D

Alcator
C-Mod



…and in Asia

NSTX-U Seminar, Princeton, November 14th, 2016 F. M. Laggner 9

[X. Gao et al., NF 2015]

EAST

[W. L. Zhong et al., PPCF 2016]

HL-2A
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[X. Gao et al., NF 2015]

EAST

[W. L. Zhong et al., PPCF 2016]

HL-2A

Can we get deeper insight in the underlying instabilities?



Profile measurements at AUG
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• Electron density (ne) and electron temperature (Te)

• Utilisation of integrated data analysis (IDA)
[R. Fischer et al., FST 2010]
 Li-Beam and interferometry for ne

 ECE for Te

– ECFM to model ECE propagation in the optically 
thin plasma

[S.K. Rathgeber et al., PPCF 2013]

• Profiles evaluated 250 μs time resolution
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• High (#30701) and low (#30721) 
pedestal top electron collisionality ν*

e,ped

• Motivation for comparison:
• Pressure (gradient) driven instabilities

should not change their behavior

• In both discharges gradients are
clamped before the ELM onset (‘soft
limit’)



Similar recovery of ne and Te
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High ν*
e,ped (#30701) case

• First ne,ped recovery (Δtne), then
Te,ped (ΔtTe)

[A. Burckhart et al., PPCF 2010]

• Fluctuations start after ΔtTe

LFS
midplane
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High ν*
e,ped (#30701) case

• First ne,ped recovery (Δtne), then
Te,ped (ΔtTe)

[A. Burckhart et al., PPCF 2010]

• Fluctuations start after ΔtTe

Low ν*
e,ped (#30721) case

• Similar phases

• High frequency fluctuations also
start after ΔtTe

Fluctuations correlated to the recovery of ne,ped & Te,ped/pe,ped
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High ν*
e,ped (#30701) case

• max(∇ne) and max(∇Te) evolve till
high frequency fluctuation onset
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High ν*
e,ped (#30701) case

• max(∇ne) and max(∇Te) evolve till
high frequency fluctuation onset

Low ν*
e,ped (#30721) case

• Gradients are also clamped after
onset of fluctuations

• Fluctuations have much higher
frequency

What determines the detected fluctuation frequency?



Mode propagation – E×B velocity
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• H-mode → strong E×B background
velocity at the edge

• In the steep gradient region Er is well
described by estimation ∇pi/eni

[E. Viezzer et al., NF 2014]

• Er and ∇pe/ene agree within their errors
in the analyzed cases
 Estimation of background velocity by

∇pe/ene valid
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• 11 discharge intervals:
• Selected to span wide range of ∇pe/ene

• Clear magnetic fluctuations (onset
correlated to Te,ped recovery)

• Detected fluctuation frequency
increases with ∇pe/ene at position of
max(∇pe)

Mode is located in the steep gradient region

Mode propagation – E×B velocity



Toroidal mode structure
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• Fit of n using the discharge intervals
with different ∇pe/ene

• Fit of toroidal mode number:
• n ~ Utor·fmagn/(v∇pe/ene·q·Utor/Upol+vtor)

• Fitted n ~ -11
• Negative n

 Counter-current or propagation in elec-
tron diamagnetic direction



Mode number analysis
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• Transfer functions of Br coils are 
required

[L. Horvath et al., PPCF 2015]
• Especially for high toroidal mode 

numbers n and at high fluctuation 
frequencies

IpBt

Top down view on AUG
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v ⊥ (i,dia)

vtor (counter-current)

vtor (co-current)

v⊥ (e,dia)

n > 0

n < 0

B

• Transfer functions of Br coils are 
required

[L. Horvath et al., PPCF 2015]
• Especially for high toroidal mode 

numbers n and at high fluctuation 
frequencies

•Negative n:
 Counter-current propagation or 

propagation in electron diamagnetic 
direction  

•Mode number fitted for every individual 
ELM cycle in time interval  → fits 
superimposed → mode number 
histogram

IpBt

Top down view on AUG
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• In both cases n ~ -11 for the high frequency fluctuations
• Similar mode structure

 Different frequency due to different background vE×B
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• In both cases n ~ -11 for the high frequency fluctuations
• Similar mode structure

 Different frequency due to different background vE×B

• Mode structure aligns with low frequency fluctuations < 200 kHz
• Same propagation velocity → same location?



Fluctuations are seen on the HFS

NSTX-U Seminar, Princeton, November 14th, 2016 F. M. Laggner 20

• Fluctuation signature visible on the HFS
• Similar onset as on the LFS
• Same frequencies as on LFS

HFS LFS
HFS LFS[F. M. Laggner et al., PPCF 2016]

LFSHFS
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• Fluctuation signature visible on the HFS
• Similar onset as on the LFS
• Same frequencies as on LFS

HFS LFS
HFS LFS[F. M. Laggner et al., PPCF 2016]

Supports large peeling component of mode structure
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While high frequency fluctuations, pedestals consistent with P-B 

• Investigate possible drives for instabilities (peeling vs. ballooning)
• 3 phases with presence of high frequency fluctuations & clamped gradients

• No evolution of operational point
• No evolution of the stability boundary
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Pedestal top match in D and H
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D
gas puff

1.5·1021 s-1

Pheat
~3.9 MW

H
gas puff

12·1021 s-1

Pheat
~7.5 MW

• Match of the edge profiles
• Ip ~ 1.0 MA, Bt ~ -2.5 T, q95 ~ 3.8

 factor of ~2 higher heating power in H

 factor of ~10 higher gas fueling rates in 
H required

 Steeper pedestal ne profile in D



He discharges
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He
gas puff

0.1·1021 s-1

Pheat
~8.5 MW

• Main ion density (ni) ~ 0.5 ne

• When comparable ne to D and H
• ELM free

 Edge pressure gradient not critical

• Higher pedestal top ne required to get 
ELMs 



Inter-ELM pedestal evolution similar

NSTX-U Seminar, Princeton, November 14th, 2016 F. M. Laggner 25

• Pedestal recovery phases
1) ne pedestal (Δtne)
2) Te pedestal (ΔtTe)

• Different timescales 
• attributed to changes in Pheat, gas puff and 

neutral velocity

• Ti evolves on 
timescale of ne
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Indication for similar mechanisms acting in the pedestal recovery

• Pedestal recovery phases
1) ne pedestal (Δtne)
2) Te pedestal (ΔtTe)

• Different timescales 
• attributed to changes in Pheat, gas puff and 

neutral velocity

• Ti evolves on 
timescale of ne



Pre-ELM toroidal mode structures
• Negative n:

• Similar to the one observed in the ν*
e,ped 

variation

• Two mode number branches with similar n
[F. Mink et al., accepted in PPCF]

• Slope represents 
different rotation 
velocity relative 
to the lab frame
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E×B velocity affected by changes in ∇ne
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• Data from pedestal parameter variation
• Selected to span wide range of ∇pe/ene
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[F. M. Laggner et al., PPCF 2016]



Frequencies consistent with E×B

• Data from pedestal parameter variation
• Selected to span wide range of ∇pe/ene

• Transformed into E×B velocity

NSTX-U Seminar, Princeton, November 14th, 2016 F. M. Laggner 27

D,H and He plasmas have 
different rotation, therefore 
detected frequency is different
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• Outer divertor in high recycling regime after the ELM crash

• Occurrence depends on the gas puff
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• Outer divertor in high recycling regime after the ELM crash

• Occurrence depends on the gas puff
[M. Wischmeier et al., JNM 2007]
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• Outer divertor in high recycling regime after the ELM crash

• Occurrence depends on the gas puff

• Post-ELM ne increase at the outer target

[M. Wischmeier et al., JNM 2007] [S. Brezinsek et al., Phys. Scr. 2016]
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Simple 1D-estimation of transport
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• Estimation of the source (Si) by 1D 
neutral transport code KN1D

• Continuity equation:

iS+
x

-=
t
n α

∂
∂

∂
∂ Γ

[B. LaBombard, PSFC report 2000]



Particle transport dynamic after ELM
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• Diffusive particle flux assumed

• Prior ELM 
• reference scale for Si

 D assumed 0.25 m2/s (ρpol 0.96)
 Determination of α

• Post ELM
• D significantly decreases when 

magnetic activity is low
• D increase when fluctuations set in

• Continuity equation:

iS+
x

-=
t
n α

∂
∂

∂
∂ Γ

x
n-D=
∂
∂

Γ
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• Diffusive particle flux assumed

• Prior ELM 
• reference scale for Si

 D assumed 0.25 m2/s (ρpol 0.96)
 Determination of α

• Post ELM
• D significantly decreases when 

magnetic activity is low
• D increase when fluctuations set in

• Continuity equation:

iS+
x

-=
t
n α

∂
∂

∂
∂ Γ

x
n-D=
∂
∂

Γ

Indication for change of particle transport 
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• Magnetic fluctuations correlated with pedestal evolution
• Onset correlated to the recovery of Te,ped (clamping of ∇ne and ∇Te)
• Detected frequency scales with background velocity
• Toroidal mode structure with n ~ -11 in all investigated cases
• Fluctuations are detectable on the HFS

 Instability located in the steep gradient region, large scale toroidal
structure with significant peeling component
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• Magnetic fluctuations correlated with pedestal evolution
• Onset correlated to the recovery of Te,ped (clamping of ∇ne and ∇Te)
• Detected frequency scales with background velocity
• Toroidal mode structure with n ~ -11 in all investigated cases
• Fluctuations are detectable on the HFS

 Instability located in the steep gradient region, large scale toroidal
structure with significant peeling component

• Identified in D, H and He plasmas
• Similar sequence pedestal recovery phases
• Pre-ELM toroidal mode structure comparable

Mechanisms in pedestal recovery independent of main ion species

• Divertor evolution during ELM-cycle
• High recycling regime in the outer divertor connected to ne recovery

 Indication for change of particle transport
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Comparison to results from JOREK

NSTX-U Seminar, Princeton, November 14th, 2016 F. M. Laggner 36

• With diamagnetic rotation (tauIC>0)
high n are stabilized
• Most unstable: 4 ≤ n ≤ 12 (here: n = 12)

[F. Orain, A. Lessig et al., EPS 2016]
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• With diamagnetic rotation (tauIC>0)
high n are stabilized
• Most unstable: 4 ≤ n ≤ 12 (here: n = 12)

• Multi n simulation
•Medium n pre-ELM structures
•Non-linear coupling of medium n

 Low n structures
[I. Krebs et al., PoP 2013]

•Saturation of modes
 Clamping of ∇p (‘soft limit’)

[F. Orain, A. Lessig et al., EPS 2016]



More frequent & larger ELMs in H
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• fELM doubles from D to H
• ELM frequency (fELM)

• ΔWMHD in H twice as large as in D
• ELM energy loss (ΔWMHD)

• PELM 4 times higher in H than in D
• Power loss by ELMs (PELM)

• Pnet-PELM-Prad,sep 1.8 times larger in H
• Corrected heating power (Pnet)
• Radiated power inside the separatrix (Prad,sep)

D
fELM ~ 50 

Hz

ΔWMHD
~20 kJ

Pnet
~3.8 MW

Prad,sep
~1.3 MW

H
fELM ~100 

Hz

ΔWMHD
~37 kJ

Pnet
~7.3 MW

Prad,sep
~0.7 MW
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• fELM doubles from D to H
• ELM frequency (fELM)

• ΔWMHD in H twice as large as in D
• ELM energy loss (ΔWMHD)

• PELM 4 times higher in H than in D
• Power loss by ELMs (PELM)

• Pnet-PELM-Prad,sep 1.8 times larger in H
• Corrected heating power (Pnet)
• Radiated power inside the separatrix (Prad,sep)

Larger power flux across the pedestal in H

D
fELM ~ 50 

Hz

ΔWMHD
~20 kJ

Pnet
~3.8 MW

Prad,sep
~1.3 MW

H
fELM ~100 

Hz

ΔWMHD
~37 kJ

Pnet
~7.3 MW

Prad,sep
~0.7 MW
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D

gas puff 
1.5·1021 s-1

H

gas puff 
12·1021 s-1

• Δtne longer in D in comparison to H
• ne pedestal recovery time (Δtne)

• Possible reasons
• Gas fueling rate differs by a factor of ~10
• Velocity of neutrals faster in H

• Deeper neutral penetration
• Increased outward particle transport from the

core to the pedestal top
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D

Pnet
~ 3.8 MW

H

Pnet
~ 7.3 MW

• ΔtTe faster in H
• Te pedestal recovery time (ΔtTe)

• Explanation
• Larger heat flux to the pedestal in H

• Higher Pnet-Prad,sep
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D

H

• ∂Br/∂t measured at the LFS midplane 
• Radial magnetic fluctuations (∂Br/∂t)

• Core modes
• Frequency < 40 kHz

• Lower magnetic activity during Δtne
• 40 kHz < frequency < 200 kHz 

• After ΔtTe activity at high frequencies
• Frequency > 200 kHz
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