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Motivation: Understand Divertor High-Z Sourcing and Transport in 
H-mode Through Trace PMI Studies with Low-Z Wall

Core
Contamination

PMI 
Sourcing

SOL
Transport

• Experimental setup allows 
probing of 3 main links in divertor
W transport to core

• Predominant C wall allows 
localization of W source unlike in 
full metal divertors
– Further localization of W source 

(i.e. SP vs divertor entrance) à
use of 182W coating
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Outline: Highlighting Use of Different Divertor Tungsten Sources on 
SOL Migration & Impact on Core in H-mode Conditions

• Experimental setup using metal inserts with W coatings
– Summary of metal inserts highlighting coating methods
– Initial post-campaign analysis: Local migration measurements & 

modeling

• Highlights from campaign on W PMI sourcing & transport 
– Recovery of high performance AT discharges with on-axis ECH
– ELMs had major impact on measure source profiles
– Measured upstream W profiles showed fELM dependence
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W Sources were Localized to 2 Locations in Outer Lower Divertor
Region; Used Novel W-182 Coating Method at 1 Location

W-182
Natural 
W

Conceptual Layout

Graphite 
Tile +  
Metal 
Insert

DIII-D W Tile Arrays
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Metal Tile Mini-campaign was a Large Multi-institutional 
Effort & Leveraged Wide Collection of New Diagnostics

* New for this campaign

• Experiments & hardware from a 
number of collaborators

• Campaign specific capabilities
– New: XUV & visible spectroscopy, 

Shell pellets, Collector probes, 
Langmuir probes, Thermocouples 

– Surface analysis: ICP-MS, RBS, 
microXRF, NRA 
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Metal Inserts were Retrofit into the Standard DIII-D 
Graphite Tile Structures

“Shelf” 
Insert

“Floor” 
Insert

Shelf

• Tile arrays à Mo alloy (TZM) inserts with thin W coatings 

Floor Tile 
Anchor 
Bolts

~17.5cm

5cm

Embedded 
TC

~1cm

5cm

Embedded 
TC

~12cm
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• Both methods produced sample coatings which were tested at GA & 
PIECES in early Spring 2016 

Coatings ORNL & Ultramet (Los Angeles, CA) Coated 
~1/2 Each of Total (120) Inserts Needed

CVD Coating (Ultramet)

Bare
TZM W-coated

“E-beam” Coating (ORNL)

50x

100x

e-beam method: 
High recovery 
(95+%) of 
feedstock + 
coating well 
reproduced   
(2um +/-1um)

Industry 
“standard,” but 
large variability in 
thickness           
(5-40um)  

182W coating

W coating
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Majority of Discharge Time was On or Near 
Insert Locations

Highest PINJ
(~19MW) 
discharges had 
strikepoint on 
Floor Array
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Histogram of Plasma Discharge Duration 
versus Outer Strikepoint Location, ROSP
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Extensive Survey of Post-Campaign PFMs showed Most 
W was Near Insert Locations

• Hand-held X-ray Flourescence 
Spectrometer (XRF) used in survey 

Poloidal 
X-section 

of 
Deposited 

W 

Courtesy of 
Chrobak, et al.    

APS 2016

W-182
Natural 
W

Upper 
Divertor
Zoom
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Extensive Survey of Post-Campaign PFMs showed Most 
Eroded W was Near Insert Locations

• Hand-held X-ray Flourescence 
Spectrometer (XRF) used in survey 

Courtesy of 
Chrobak, et al.    

APS 2016

+
-

XRF Survey Results of 
Deposited W 

W Array locations
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Extensive Survey of Post-Campaign PFMs showed Most 
Eroded W was Near Insert Locations

• Hand-held X-ray Flourescence 
Spectrometer (XRF) used in survey 

Courtesy of 
Chrobak, et al.    

APS 2016

+
-

XRF Survey Results of 
Deposited W 

W Array locations
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DiMES Used as Local Deposition Probe During Initial 
Dedicated W Migration Experiments 

Courtesy of 
Rudakov, et al.   

APS 2016

• Clamshell-like design allowed for 
local migration measurements in 
time

• Seems carbon redeposition 
dominating far-SOL pattern  

R0

RBS W measurement 
compared to ERO estimates

R

𝜙Left
half

Right
half

Radial inserts

Geomtery & Head Design                      
for Metal Ring Campaign
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chipped/cracked 
graphite tile corners 

Summary of Metal Insert: Modeling W Migration via 
ERO & Leading Edge Melting On-going

Melting              
(5 cases)

Top-down View of Lower Divertor

Courtesy of Guterl, et al. & 
Barton et al. APS 2016

• Floor array showed damage 
due to leading edges & stress 
beyond design

W migration Workflow Schematic

• Accurate accounting of C 
distribution is main focus of 
migration modeling
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Outline: Highlighting Use of Different Divertor Tungsten Sources on 
SOL Migration & Impact on Core in H-mode Conditions

• Experimental setup using metal inserts with W coatings
– Summary of metal inserts highlighting coating methods
– Initial post-campaign analysis: migration & tile damage

• Highlights from campaign on W PMI sourcing & transport 
– Recovery of high performance AT discharges with on-axis ECH
– ELMs had major impact on measure source profiles
– Measured upstream W profiles showed fELM dependence
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Motivation: Understand Divertor High-Z Sourcing and Transport in 
H-mode Through Trace PMI Studies with Low-Z Wall

Core
Contamination

PMI 
Sourcing

SOL
Transport

• Experimental setup allows 
probing of 3 main links in divertor
W transport to core

• Predominant C wall allows 
localization of W source unlike in 
full metal divertors
– Further localization of W source 

(i.e. SP vs divertor entrance) à
use of 182W coating
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Large Set of Discharges were in Very Good 
Performance Regime

• Collisionality, νeff <~1 à Favorable for density peaking

νeff

Campaign Statistics: Scatter plots of core 
collisionality versus H98 & W erosion
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Large Set of Discharges were in Very Good 
Performance Regime

• Collisionality, νeff <~1 à Favorable for density peaking

νeff

Campaign Statistics: Scatter plots of core 
collisionality versus H98 & W erosion
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• Standard AT hybrid 
conditions replicated 
w/ & w/o W-tiles
– ~4 MW on-axis ECH in 

both

• Accumulation was 
sensitive to profiles
– Core MHD also plays 

role
– e.g. hybrids w/o on-

axis ECH show strong 
accumulation 

High-performance Discharges with OSP on W Target Required   
On-axis ECH to Keep Core Accumulation Down

νeff

Core
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Changing ECH Resonance Location Changed Core 
W Accumulation 

• AT scenerios with 
higer qmin require 
off-axis curent drive 
– Here via ECCD 

(red)

• Changed core 
gradient enough à
W accumulation

Core
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Changing ECH Resonance Location Changed Core 
W Accumulation 
• AT scenerios with 

higer qmin require 
off-axis curent drive 
– Here via ECCD 

(red)

• Changed core 
gradient enough à
W accumulation

Core
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Large Set of Discharges were in Very Good 
Performance Regime

• Collisionality, νeff <~1 à Favorable for density peaking

νeff

Campaign Statistics: Scatter plots of core 
collisionality versus H98 & W erosion
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• Expect a linear increase 
source strength with ELM 
size*
– Holds ~ up to a given 

ELM size
• Roll-over at highest ELM 

size could be due to 
departure of peak flux 
profile away from OSP

Erosion per ELM Saturates due to Spreading of Fluxes of W Target 
Inserts

W gross erosion/ELM 
versus ELM size

* denHarder et al., Nuc. Fusion (2016)
Sourcing
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Intra-ELM W Erosion Profiles Depend on ELM Size but are 
Consistent with Sputtering Models

• Similar to heat flux broadening seen during large ELMs*
• Model uses C flux fraction & C/W surface ratio as free parameters
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W erosion profile 
broadens +
shifts away from 
OSP at low ELM 
frequency

*Jakubowski NF 2009, Eich JNM 2011

Abrams, PSI-Rome  2016

Sourcing
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• Comparison with heat flux 
measurements confirm 
broadening of peak flux away 
from OSP

• OSP placed on inboard edge 
of W-coated tile
– ELM freq./energy 

varied via PINJ,dupper

• W source scaling is 
independent of 
ELM frequency

ELM W gross erosion compared 
to ELM heat flux on source 

ELM deposited energy on 
W-coated tile (kJ)

W
 a

to
m

s/
EL

M
 (x

10
16

)

W Sourcing During ELMs shows a Strong Correlation with 
Deposited Energy

0.1

1
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0.001 0.01 0.1 1
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Collector Probe was Retrofit to DIII-D MiMES/RCP Allowing a Large 
Variety in Probe Geometry  

• Probes designed to sample different SOL surfaces; by 
design and/or geometry
– Design: Different diameters have different connection 

lengths
– Geometry: Location of MiMEs below midplane + 

shaping leads to a radial spread in location 

B
A
C

UCSD/ORNL 
Collector Probe

SOL
Transport
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• A 2 W source mixing model using,         , is straightforward to 
interpret;

Stable Isotope Mixing Models (SIMMs)* are Commonly used to 
Determine Unique Isotopic Source Contributions

• Define a standard, δxE, & an isotope ratio, Rx
y, of element E;

�W
mix

= �182W · f182 + �natW · f
nat

�xE =
R

samp

R
std

� 1 Rx

y

=
Ex

Ey

R182
184

*See: J.G. Wiederhold, Environ. Sci. Tech. 49 (2015);  
M. Ben-David et al., J. Mammalogy 93(2) (2012)

– where f182 + fnat = 1
– f = fractional far-SOL 

flux of each source

• 𝞭Wmix , 𝞭W182 , 𝞭Wnat
measured by ICP-MS
– 𝞭Wmix is from DP 
– 𝞭W182 & 𝞭Wnat are 

pre-determined 
standards

SOL
Transport

SIMM Example from Ecology*
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• Upstream divertor W sources à CP + ex-situ mass spectroscopy, 
ICP-MS (UT-Knoxville) 
– Coupled with localized in-situ source W-I spectroscopy

Localization of Divertor W Sources Made Possible By 
Novel Isotopic Coating and Detection Methods 
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0.0
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167463.03500.EFIT01

Collector
Probe
(CP)

SOL
Transport

Far-SOL 
Source
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SP Source
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Large Set of Discharges were in Very Good 
Performance Regime

• Collisionality, νeff <~1 à Favorable for density peaking

νeff

Campaign Statistics: Scatter plots of core 
collisionality versus H98 & W erosion
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Cross-check of Source Determination (SIMMs) Model Performed 
in L-mode with SP on Shelf; Showed Dominate 182W Upstream

• High power (PINJ ~3MW) L-mode at 
begining of campaign
– Very likely no migration contamination

• “Classic” CP profiles seen with strong 182-
W signature
– Sanity check probe ‘saw’ only one source

Collector
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Large Set of Discharges were in Very Good 
Performance Regime

• Collisionality, νeff <~1 à Favorable for density peaking

νeff

Campaign Statistics: Scatter plots of core 
collisionality versus H98 & W erosion
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ELM Resolved W Sputtering Fluxes Show a Dominate 
SP W Source in High-fELM, High-power H-modes 

• Data is ensemble average 
over ~ 1sec (2800-3900) 
period

• Strongest W source is from 
floor during ELM (inter-ELM)

• Floor source is ~3x that of shelf 
for this condition; small 
deviation during ELM seen

0

4

8

W
 s

ou
rc

e 
(1

0
19

at
om

s 
s

-1
)

Floor W source

Shelf W source

0

2

4

-2        -1           0           1          2            3

W
 S

ou
rc

e 
R

at
io

t - tELM (ms)

Floor:Shelf Ratio

167463; 2800-3900

0

4

8

W
 s

ou
rc

e 
(1

0
19

at
om

s 
s

-1
)

Floor W source

Shelf W source

0

2

4

-2        -1           0           1          2            3

W
 S

ou
rc

e 
R

at
io

t - tELM (ms)

Floor:Shelf Ratio

167463; 2800-3900

SP
Source

far-SOL Source~3x

167463.2800:3900

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

W gross erosion via W-I spectrscopy

SOL
Transport



NATIONAL FUSION FACILITY
S A N  D I E G O

DIII–D
Unterberg/PPPL Seminar/November 2016

33

Measured Upstream W Density Dominated by SP W 
Sources in High-fELM, High-power H-modes 

• Ratio of floor to shelf 
density is significantly 
higher than source ratio
– Source floor/shelf ratio 

~3 

• CP analysis: Floor (SP) 
contributes ~15x that of 
divertor shelf source

• Suggests SP is more 
efficient at SOL 
contamination than far-
SOL
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Large Set of Discharges were in Very Good 
Performance Regime

• Collisionality, νeff <~1 à Favorable for density peaking

νeff

Campaign Statistics: Scatter plots of core 
collisionality versus H98 & W erosion
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In Discharges with Lower fELM (& Lower PAUX), W Source Location 
become Comparable; ~ Same for inter-ELM Sourcing

• ELM source evolution is also 
very different from higher PAUX
case
– Much bigger Type-I in these cases 

• Inter-ELM source ratio is similar 
to that in high PAUX case; ~3x

• This W sourcing signature 
dramatically changes upstream 
W content 
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Case with Lower ELM Frequency Shows Upstream 
Isotope Distribution Coming More from far-SOL Source

• Mix of SP à far-SOL 
becomes comparable
– Closer to separatrix 

(small R-Rsep) ratio à 1

• In this scenerio, far-SOL 
source becomes more 
important
– ELM wetted area 

increased
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Overall Summary: Divertor W Sources at OSP Became Dominant 
SOL Contamination Location at High Power, High fELM

• Unique experimental setup allowed distinguishable W 
sources at OSP versus divertor shelf/entrance
– ELM-y H-mode conditions coupled with upstream CP

• ELMs had major impact on source strength & upstream 
density characteristics
– Depended on ELM size & flux profile 

• Measurements of upstream W densities show SP/far-SOL 
shows are dependent on operating scenario
– CP measurements show ~15x W from SP/far-SOL compared to 

~3:1 source ratio 
– Lower fELM shows a drop ~5x SP/far-SOL distribution
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Backups Break

• End
– ..

• ..
• Fin
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Concept of Collector Probes (CP) are Used Frequently in 
Tokamak PMI/Surface Analysis Studies

• 70s & 80s saw many in use* (T10, TEXTOR, JET, ASDEX, PLT)
• Perturbation length, L||, is a balance in ambipolar transport

– In far-SOL can be set by diffusive or convective transport
– Related to Collection Length, Ltot = 2 x  L||
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*see e.g., Cohen JNM (1978); Goodall et al., JNM (1980); Stangeby, J.Phys.D (1985); Stangeby, Phys. 
Fluids (1987); Staudenmaier et al., JNM (1987); Hildebrandt et al., Cont. Plasma Phys. (1988); Grote 
et al., JNM (1989)  

Diagram of 
perturbation length

Sampling Length for DIII-D probe-set

SOL
Transport
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Testing: cW∝ 𝜱𝑫𝑷
𝑾𝒊
∝ 𝜱𝐬𝐨𝐮𝐫𝐜𝐞

𝑾𝒊 ; 𝐚𝐥𝐬𝐨	𝐜𝐡𝐞𝐜𝐤	𝐢𝐟: 𝜱𝑫𝑷
𝑾𝒊

𝜱𝒔𝒆𝒑𝑾𝒊 ≈
𝜱𝑫𝑷
𝑾𝒑𝒆𝒍𝒍𝒆𝒕

𝜱𝒑𝒆𝒍𝒍𝒆𝒕
𝑾𝒑𝒆𝒍𝒍𝒆𝒕

Midplane Collector Probe Hypothesis Provides a Connection 
Between Φ@AB

𝑾 & Φ𝐃𝐏
𝑾 	− 𝐁ut Needs to be Verified   

Schematic of DIV SOL Fluxes

ΦGHIJKL	
MN

ΦOP
MN

⇒ ⇒ ⇒

Φ@AB
MN

⇒ ⇒
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Peter/DIVIMP predicted this: modeling with DIII-D metal 
tile geometry has given some predictions/trends

• Expected deposition rate on DP more than adequate for ICPMS 
& RBS analysis
– Corroborated by past results from AUG DP, e.g. see  

From Stangeby BPMIC talk a couple 
months ago

nW profiles 
of various ring geometries 

(D. Elder PSI 2016)
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Core Te and ne gradient changes

• …
+       dne/dpsi -

dTe/dpsi
+              0            -

dne/dpsi
+              0            -
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Preliminary Planning for Extended/More High-Z Divertor
Experiments
• Considering Metal Tiles in FY19 & 

Beyond:
– Concept #1: Locations Give Wider 

Range of Conditions/Configurations
– Concept #2: Metal Target Impact 

on Detachment Onset 
• Also: Div: W + Main Chamber: SiC
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