Overview & Initial Results from DIII-D Metal Tile Campaign

by

E.A. Unterberg¹

T. Abrams⁶, S.L. Allen³, L.R. Baylor¹, J. Barton⁴, J.A. Boedo⁵, A.R. Briesemeister¹, D. Buchenhauer⁴, I. Bykov⁵, N. Commaux¹, C.P. Chrobak⁶, R. Ding², R.P. Doerner⁵, D. Donovan⁷, J.D. Elder⁸, D. Ennis⁹, A.M. Garafalo⁶, B.A. Grierson¹⁰, H.Y. Guo⁶, J. Guterl², D.L. Hillis¹, E.T. Hinson¹¹, E.M Hollmann⁵, C.J. Lasnier³, A.W. Leonard⁶, M.A. Makowski³, A.G. McLean³, W.H. Meyer³, A.L. Moser⁶, R. Nygren⁴, T.W. Petrie⁶, D.L. Rudakov⁵, C. Samuell³, O. Schmitz¹¹, D. Shiraki¹, P.C. Stangeby⁸, D.M. Thomas⁶, B.S. Victor³, W.R. Wampler⁴, H.Q. Wang², J.G. Watkins⁴, M. Zach¹

1ORNL2ORAU3LLNL4SNL5UCSD6GA7UT-Knoxville8U. Toronto9Auburn U.10PPPL11UW-Madison

Presented at PPPL/NSTX-U Weekly Physics Seminar Princeton, New Jersey November 28, 2016

Motivation: Understand Divertor High-Z Sourcing and Transport in H-mode Through Trace PMI Studies with Low-Z Wall

- Experimental setup allows probing of 3 main links in divertor W transport to core
- Predominant C wall allows localization of W source unlike in full metal divertors
 - Further localization of W source (i.e. SP vs divertor entrance) → use of 182W coating

ational Laboratory

Outline: Highlighting Use of Different Divertor Tungsten Sources on SOL Migration & Impact on Core in H-mode Conditions

• Experimental setup using metal inserts with W coatings

- Summary of metal inserts highlighting coating methods
- Initial post-campaign analysis: Local migration measurements & modeling
- Highlights from campaign on W PMI sourcing & transport
 - Recovery of high performance AT discharges with on-axis ECH
 - ELMs had major impact on measure source profiles
 - Measured upstream W profiles showed f_{ELM} dependence

W Sources were Localized to 2 Locations in Outer Lower Divertor Region; Used Novel W-182 Coating Method at 1 Location

Metal Tile Mini-campaign was a Large Multi-institutional **Effort & Leveraged Wide Collection of New Diagnostics**

- **Experiments & hardware from a** number of collaborators
- Campaign specific capabilities
 - New: XUV & visible spectroscopy, Shell pellets, Collector probes, Langmuir probes, Thermocouples
 - Surface analysis: ICP-MS, RBS, microXRF, NRA

(a)

Surface Imaging &

SXR Arrays

Chordal Spectroscopy*

Metal Tile Mini-campaign was a Large Multi-institutional Effort & Leveraged Wide Collection of New Diagnostics

- Experiments & hardware from a number of collaborators
- Campaign specific capabilities
 - New: XUV & visible spectroscopy,
 Shell pellets, Collector probes,
 Langmuir probes, Thermocouples
 - Surface analysis: ICP-MS, RBS, microXRF, NRA

129949.01035.EFIT03

Sandia

National Laboratories

AUBURN

UNIVERSITY

UNIVERSITY OF

Lawrence Livermore National Laboratory

(b)

d=!!=

Metal Inserts were Retrofit into the Standard DIII-D Graphite Tile Structures

• Tile arrays \rightarrow Mo alloy (TZM) inserts with thin W coatings

Coatings ORNL & Ultramet (Los Angeles, CA) Coated ~1/2 Each of Total (120) Inserts Needed

 Both methods produced sample coatings which were tested at GA & PIECES in early Spring 2016

SAN DIEGO

Industry "standard," but large variability in thickness (5-40um)

e-beam method: High recovery (95+%) of feedstock + coating well reproduced (2um +/-1um)

Unterberg/PPPL Seminar/November 2016

Majority of Discharge Time was On or Near Insert Locations

SAN DIEGO

Extensive Survey of Post-Campaign PFMs showed Most W was Near Insert Locations

Extensive Survey of Post-Campaign PFMs showed Most **Eroded W was Near Insert Locations**

Hand-held X-ray Flourescence Spectrometer (XRF) used in survey

Extensive Survey of Post-Campaign PFMs showed Most **Eroded W was Near Insert Locations**

Hand-held X-ray Flourescence Spectrometer (XRF) used in survey

DiMES Used as Local Deposition Probe During Initial Dedicated W Migration Experiments

- Clamshell-like design allowed for local migration measurements in time
- Seems carbon redeposition dominating far-SOL pattern

Geomtery & Head Design for Metal Ring Campaign

Radial inserts

Courtesy of Rudakov, et al. APS 2016

RBS W measurement compared to ERO estimates τU Insert A2 W coverage (1015 atoms/cm2) 1 0.1 Model (85 s) 0.01 -25 -20 -15 -10 10 15 20 25 Distance from center (mm)

Unterberg/PPPL Seminar/November 2016

Summary of Metal Insert: Modeling W Migration via ERO & Leading Edge Melting On-going

 Floor array showed damage due to leading edges & stress beyond design

 Accurate accounting of C distribution is main focus of migration modeling

Courtesy of Guterl, et al. & Barton et al. APS 2016

Outline: Highlighting Use of Different Divertor Tungsten Sources on SOL Migration & Impact on Core in H-mode Conditions

- Experimental setup using metal inserts with W coatings
 - Summary of metal inserts highlighting coating methods
 - Initial post-campaign analysis: migration & tile damage
- Highlights from campaign on W PMI sourcing & transport
 - Recovery of high performance AT discharges with on-axis ECH
 - ELMs had major impact on measure source profiles
 - Measured upstream W profiles showed f_{ELM} dependence

Motivation: Understand Divertor High-Z Sourcing and Transport in H-mode Through Trace PMI Studies with Low-Z Wall

- Experimental setup allows probing of 3 main links in divertor W transport to core
- Predominant C wall allows localization of W source unlike in full metal divertors
 - Further localization of W source (i.e. SP vs divertor entrance) → use of 182W coating

lational Laboratory

Large Set of Discharges were in Very Good Performance Regime

• Collisionality, $v_{eff} < \sim 1 \rightarrow$ Favorable for density peaking

Large Set of Discharges were in Very Good Performance Regime

• Collisionality, $v_{eff} < \sim 1 \rightarrow$ Favorable for density peaking

High-performance Discharges with OSP on W Target Required On-axis ECH to Keep Core Accumulation Down

- Standard AT hybrid conditions replicated w/ & w/o W-tiles
 - ~4 MW on-axis ECH in both
- Accumulation was sensitive to profiles
 - Core MHD also plays role
 - e.g. hybrids w/o onaxis ECH show strong accumulation

Core

Changing ECH Resonance Location Changed Core W Accumulation

- AT scenerios with higer q_{min} require off-axis curent drive
 - Here via ECCD (red)
- Changed core gradient enough →
 W accumulation

Changing ECH Resonance Location Changed Core W Accumulation

- AT scenerios with higer qmin require off-axis curent drive
 - Here via ECCD (red)
- Changed core gradient enough →
 W accumulation

Core

Large Set of Discharges were in Very Good Performance Regime

• Collisionality, $v_{eff} < \sim 1 \rightarrow$ Favorable for density peaking

Erosion per ELM Saturates due to Spreading of Fluxes of W Target Inserts

- Expect a linear increase source strength with ELM size*
 - Holds ~ up to a given
 ELM size
- Roll-over at highest ELM size could be due to departure of peak flux profile away from OSP

Intra-ELM W Erosion Profiles Depend on ELM Size but are Consistent with Sputtering Models

- Similar to heat flux broadening seen during large ELMs*
- Model uses C flux fraction & C/W surface ratio as free parameters

W Sourcing During ELMs shows a Strong Correlation with Deposited Energy

- Comparison with heat flux measurements confirm broadening of peak flux away from OSP
- OSP placed on inboard edge of W-coated tile
 - ELM freq./energy varied via P_{INJ} , δ_{upper}
- W source scaling is independent of ELM frequency

ELM W gross erosion compared to ELM heat flux on source

Collector Probe was Retrofit to DIII-D MiMES/RCP Allowing a Large Variety in Probe Geometry

- Probes designed to sample different SOL surfaces; by design and/or geometry
 - Design: Different diameters have different connection lengths
 - Geometry: Location of MiMEs below midplane + shaping leads to a radial spread in location

Stable Isotope Mixing Models (SIMMs)* are Commonly used to Determine Unique Isotopic Source Contributions

• Define a standard, $\delta^{x}E$, & an isotope ratio, R^{x}_{y} , of element E;

$$\delta^{x}E = \frac{R_{samp}}{R_{std}} - 1 \qquad R_{y}^{x} = \frac{E^{x}}{E^{y}}$$

- A 2 W source mixing model using, R_{184}^{182} , is straightforward to interpret; $\delta W_{mix} = \delta^{182}W \cdot f_{182} + \delta^{nat}W \cdot f_{nat}$
 - where $f_{182} + f_{nat} = 1$
 - f = fractional far-SOL
 flux of each source
- δW_{mix}, δW₁₈₂, δW_{nat}
 measured by ICP-MS
 - $\boldsymbol{\delta}W_{mix}$ is from DP
 - **δ**W₁₈₂ & **δ**W_{nat} are pre-determined standards

*See: J.G. Wiederhold, Environ. Sci. Tech. 49 (2015); M. Ben-David et al., J. Mammalogy 93(2) (2012)

Localization of Divertor W Sources Made Possible By Novel Isotopic Coating and Detection Methods

- Upstream divertor W sources → CP + ex-situ mass spectroscopy, ICP-MS (UT-Knoxville)
 - Coupled with localized in-situ source W-I spectroscopy

Large Set of Discharges were in Very Good Performance Regime

• Collisionality, $v_{eff} < \sim 1 \rightarrow$ Favorable for density peaking

Cross-check of Source Determination (SIMMs) Model Performed in L-mode with SP on Shelf; Showed Dominate ¹⁸²W Upstream

Large Set of Discharges were in Very Good Performance Regime

• Collisionality, $v_{eff} < \sim 1 \rightarrow$ Favorable for density peaking

ELM Resolved W Sputtering Fluxes Show a Dominate SP W Source in High-f_{ELM}, High-power H-modes

- Data is ensemble average over ~ 1sec (2800-3900) period
- Strongest W source is from floor during ELM (inter-ELM)
- Floor source is ~3x that of shelf for this condition; small deviation during ELM seen

SOL

Transport

Measured Upstream W Density Dominated by SP W Sources in High-f_{ELM}, High-power H-modes

- Ratio of floor to shelf density is significantly higher than source ratio
 - Source floor/shelf ratio ~3
- CP analysis: Floor (SP) contributes ~15x that of divertor shelf source
- Suggests SP is more efficient at SOL contamination than far-SOL

Radial upstream W profile from each source via ICP-MS + RBS

SOL

Transport

Large Set of Discharges were in Very Good Performance Regime

• Collisionality, $v_{eff} < \sim 1 \rightarrow$ Favorable for density peaking

In Discharges with Lower f_{ELM} (& Lower P_{AUX}), W Source Location become Comparable; ~ Same for inter-ELM Sourcing

- ELM source evolution is also very different from higher P_{AUX} case
 - Much bigger Type-I in these cases
- Inter-ELM source ratio is similar to that in high P_{AUX} case; ~3x
- This W sourcing signature dramatically changes upstream W content

Case with Lower ELM Frequency Shows Upstream Isotope Distribution Coming More from far-SOL Source

- Mix of SP \rightarrow far-SOL becomes comparable
 - Closer to separatrix (small R-R_{sep}) ratio \rightarrow 1
- In this scenerio, far-SOL source becomes more important
 - FIM wetted area increased

SOL

Transport

Overall Summary: Divertor W Sources at OSP Became Dominant SOL Contamination Location at High Power, High f_{ELM}

- Unique experimental setup allowed distinguishable W sources at OSP versus divertor shelf/entrance
 - ELM-y H-mode conditions coupled with upstream CP
- ELMs had major impact on source strength & upstream density characteristics
 - Depended on ELM size & flux profile
- Measurements of upstream W densities show SP/far-SOL shows are dependent on operating scenario
 - CP measurements show ~15x W from SP/far-SOL compared to ~3:1 source ratio
 - Lower f_{ELM} shows a drop ~5x SP/far-SOL distribution

Backups Break

- End
- ...
- ..
- Fin

Concept of Collector Probes (CP) are Used Frequently in Tokamak PMI/Surface Analysis Studies

- 70s & 80s saw many in use* (T10, TEXTOR, JET, ASDEX, PLT)
- Perturbation length, $L_{||}$, is a balance in ambipolar transport
 - In far-SOL can be set by diffusive or convective transport
 - Related to Collection Length, $L_{tot} = 2 \times L_{11}$

et al., JNM (1989)

Midplane Collector Probe Hypothesis Provides a Connection Between Φ_{sep}^W & Φ_{DP}^W – But Needs to be Verified

Peter/DIVIMP predicted this: modeling with DIII-D metal tile geometry has given some predictions/trends

 Expected deposition rate on DP more than adequate for ICPMS & RBS analysis

- Corroborated by past results from AUG DP, e.g. see

Core T_e and n_e gradient changes

Preliminary Planning for Extended/More High-Z Divertor **Experiments**

- Considering Metal Tiles in FY19 & **Beyond**:
 - Concept #1: Locations Give Wider Range of Conditions/Configurations
 - Concept #2: Metal Target Impact on Detachment Onset
- Also: Div: W + Main Chamber: SiC

