

A Synthetic Diagnostic for Studying Electron Scale Turbulence at NSTX and NSTX-U

J. Ruiz Ruiz¹

Y. Ren², W. Guttenfelder², A. E. White¹, N. F. Loureiro¹, S.M. Kaye², B. P. LeBlanc², E. Mazzucato², K.C. Lee³, C.W. Domier⁴, D. R. Smith⁵, H. Yuh⁶ 1. MIT 2. PPPL 3. NFRI 4. UC Davis 5. U Wisconsin 6. Nova Photonics, Inc.

> NSTX-U Science Meeting Dec 5, 2016

Outline

- Motivation
- Old high-k scattering system at NSTX
- The GYRO code
- Previous Work on synthetic high-k
- New Synthetic Diagnostic for the high-k scattering system
 - 1. Coordinate mapping (this talk)
 - 2. Filtering (ongoing work)
- Results from Coordinate Mapping
 - 1. Old high-k system
 - 2. New high-k system

Understanding Electron Thermal Transport is a Main Thrust in the NSTX and NSTX-U Research Program

- NSTX H-mode plasmas that are driven by neutral beams exhibit ion thermal transport close to neoclassical (collisional) levels, due to *suppression of ion scale turbulence by ExB shear* [*cf. Kaye NF 2007*].
- Electron thermal transport is always anomalous (>> neoclassical).
- <u>Goal</u>: Study electron thermal transport caused by electron-scale turbulence in NSTX and NSTX-U.

Outline

- Motivation
- Old high-k scattering system at NSTX
- The GYRO code
- Previous Work on synthetic high-k
- New Synthetic Diagnostic for the high-k scattering system
 - 1. Coordinate mapping (this talk)
 - 2. Filtering (ongoing work)
- Results from Coordinate Mapping
 - 1. Old high-k system
 - 2. New high-k system

Old High-k Microwave Scattering Diagnostic System at NSTX

Measurement of density fluctuations

Scattered power density

$$\overline{P_s} \propto \left(\frac{\delta n}{n}\right)^2$$

Three wave-coupling

$$\vec{k}_s = \vec{k} + \vec{k}_i \qquad \omega_s = \omega + \omega$$

Details of diagnostic

- Gaussian Probe beam: 15 mW, 280 GHz, $\lambda_i \sim 1.07$ mm, a = 3 cm (1/e² radius).
- Propagation close to midplane $=> k_r$ spectrum.
- 5 detection channels => range $k_R \sim 5-30 \text{ cm}^{-1}$ (high-k).
- Wavenumber resolution $\Delta k = \pm 0.7 \text{ cm}^{-1}$.
- Radial coverage: R = 106-144 cm.
- Radial resolution: $\Delta R = \pm 2 \text{ cm}$ (unique feature).

High-k Scattering Allows the Study of Frequency and Wavenumber Spectrum of Electron Scale Turbulence

- Frequency analysis of scattered power \rightarrow frequency spectrum.
- Different channels \rightarrow different k \rightarrow wavenumber spectrum of turbulence

Outline

- Motivation
- Old high-k scattering system at NSTX
- The GYRO code
- Previous Work on synthetic high-k
- New Synthetic Diagnostic for the high-k scattering system
 - 1. Coordinate mapping (this talk)
 - 2. Filtering (ongoing work)
- Results from Coordinate Mapping
 - 1. Old high-k system
 - 2. New high-k system

The GYRO code Numerically solves the Gyrokinetic-Maxwell System

- Turbulence and transport in tokamaks is studied with gyrokinetics.
- The gyrokinetic-Maxwwell system cannot be solved analytically except in simple limits
 → needs to be solved numerically (GYRO)
- Inputs: experimental plasma parameters plasma shape, equilibrium geometry, profiles, ...
- Outputs: moments and fields
 - Moments of the distribution function *h_s*
 - Perturbed electromagnetic field components
- Turbulent fluxes (particle Γ_s , heat Q_s , ...) can be reconstructed from outputs, and compared with experimental values.

Examples of GYRO output from an NSTX H-mode plasma

A Quantitative Comparison between Experiment and GYRO is not Possible due to Different k-definitions

 $k_{\perp} = (k_{R}, k_{Z})$ (cylindrical coordinates)

 $k = (k_r, k_{\theta})$ (internal GYRO definitions – field aligned coordinate system)

•
$$k_{\theta} = nq/r$$

Principles of the Synthetic Diagnostic

- Goal: A quantitative comparison between experiment and simulation of electron scale turbulence (e.g. frequency and k-spectrum below).
- Need to map experiment and simulation into a common coordinate system
- I have done: Written a series of Matlab routines that perform the geometric mapping between the experimental frame and simulation frame.

Outline

- Motivation
- Old high-k scattering system at NSTX
- The GYRO code
- Previous Work on synthetic high-k
- New Synthetic Diagnostic for the high-k scattering system
 - 1. Coordinate mapping (this talk)
 - 2. Filtering (ongoing work)
- Results from Coordinate Mapping
 - 1. Old high-k system
 - 2. New high-k system

- Previous synthetic high-k scattering was implemented with GTS (*cf.* Poli PoP 2010).
- Synthetic spectra was affected by 'systematic errors' (simulation run time, low k_θ detected, scattering localization)
- No quantitative agreement was obtained between experimental and simulated frequency spectra.

Outline

- Motivation
- Old high-k scattering system at NSTX
- The GYRO code
- Previous Work on synthetic high-k
- New Synthetic Diagnostic for the high-k scattering system
 - 1. Coordinate mapping (this talk)
 - 2. Filtering (ongoing work)
- Results from Coordinate Mapping
 - 1. Old high-k system
 - 2. New high-k system

Preliminary Steps Prior to the Implementation a Synthetic High-k Scattering Diagnostic using GYRO

Preliminary Steps:

- 1. High-k scattering diagnostic \rightarrow experimental density fluctuation spectra $|\delta n_e|^2_{kR,kZ}(\omega)$
- 2. Ray tracing code:
 - Scattering location + resolution
 - Turbulence wavenumber + resolution

 $(\mathsf{R}_{\mathsf{loc}}, \mathsf{Z}_{\mathsf{loc}}) + (\Delta \mathsf{R}_{\mathsf{loc}}, \Delta \mathsf{Z}_{\mathsf{loc}}) \\ (\mathsf{k}_{\mathsf{R}}^{\mathsf{exp}}, \mathsf{k}_{\mathsf{Z}}^{\mathsf{exp}}) + (\Delta \mathsf{k}_{\mathsf{R}}^{\mathsf{exp}}, \Delta \mathsf{k}_{\mathsf{Z}}^{\mathsf{exp}})$

3. Run a nonlinear gyrokinetic simulation (used GYRO here) capturing scattering location + resolving the experimentally measured wavenumber.

Summary Steps of the Synthetic High-k Scattering Diagnostic using GYRO

Steps in synthetic diagnostic implementation

 Coordinate Mapping (done): Coordinate mapping GYRO (r, θ, φ) Wavenumber mapping (k_rρ_s,k_θρ_s)_{GYRO}

- **2. Filtering:** Apply instrumental selectivity function to simulated density fluctuations from GYRO. Preliminary only (ongoing work)
- **3. Quantitative comparison** between experiment and simulation (future work).

Outline

- Motivation
- Old high-k scattering system at NSTX
- The GYRO code
- Previous Work on synthetic high-k
- New Synthetic Diagnostic for the high-k scattering system
 - 1. Coordinate mapping (this talk)
 - 2. Filtering (ongoing work)

Results from Coordinate Mapping

- 1. Old high-k system
- 2. New high-k system

Results of mapping

Experiment (shot 141767, ch1)

<u>GYRO</u>

 $k_R = -18.57 \text{ cm}^{-1}$ → $k_r \rho_s = -2.68$ $k_Z = 4.93 \text{ cm}^{-1}$ → $k_\theta \rho_s = 4.99$

 ρ_s^{GYRO} = 0.2 cm

Next step is to run a GYRO simulation that resolves the experimental wavenumbers and the high-k ETG spectrum.

Mapped (k_R , k_Z)^{exp} to GYRO ($k_r \rho_s$, $k_\theta \rho_s$)_{GYRO} in Standard electron Scale Simulation

- Blue dots: (k_rρ_s, k_θρ_s)^{exp} of channels
 1, 2, 3 of high-k system.
- Ellipses are e⁻¹ and e⁻² amplitude of (k_r, k_θ) gaussian filter (simplified selectivity function)

$$F(k_r, k_{\theta}) = F_r(k_r) F_{\theta}(k_r)$$

$$F_r(k_r) = \exp\left(-(k_r - k_r^{\exp})^2 / \Delta k_r^2\right)$$

$$F_{\theta}(k_{\theta}) = \exp\left(-(k_{\theta} - k_{\theta}^{\exp})^2 / \Delta k_{\theta}^2\right)$$

Numerical grid of standard e- scale simulation does NOT accurately resolve the experimental wavenumber.

Numerical Resolution Details of the Scale Simulations Presented

Experimental profiles used as input

Local, flux-tube simulations performed at scattering location (r/a~0.7, R~136 cm).

- Only electron scale turbulence included.
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_e \sim 0.3$ %.
- Collisions ($v_{ei} \sim 1 c_s/a$).
- ExB shear ($\gamma_E \sim 0.13 c_s/a$) + parallel flow shear ($\gamma_p \sim 1 c_s/a$)
- Fixed boundary conditions with $\Delta^{b} \sim 1.5 \rho_{s}$ buffer widths.

Standard e- scale resolution parameters

- $L_r \times L_y = 6 \times 4 \rho_s$.
- n_r x n = 192 x 48.
- $k_{\theta}\rho_{s}$ [min, max] = [1.5, 74]
- $k_r \rho_s$ [min, max] = [1, 50]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [14, 12, 12]$

<u>Big-box e- scale</u> resolution parameters

- $L_r \times L_y = 21 \times 21 \rho_s$.
- $n_r x n = 512 x 142$.
- $k_{\theta}\rho_{s}[min, max] = [0.3, 43]$
- k_rρ_s [min, max] = [0.3, 38]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [14, 12, 12]$
- Big-box e- scale runs presented here are NOT multiscale:
- lons are not resolved correctly $\Delta k_{\theta} \rho_s \sim 0.3$, $L_r \propto L_y = 21 \times 21 \rho_s$.
- Simulation ran only for electron time scales ($\sim 20a/c_s$), ions are not fully developed.

Big-box simulation spectra show well resolved (k_R,k_Z)^{exp} and electron scale spectrum.

A Big-Simulation-Domain Electron Scale Simulation Was Performed to Apply New Synthetic Diagnostic

- Outboard mid-plane δn_e(R, Z) in a bigsimulation domain e- scale GYRO simulation of real NSTX plasma discharge.
- Shot 141767, time t = 398 ms (*cf.* Ruiz Ruiz PoP 2015).
- Dots are scattering location for channels
 1, 2, and 3 of high-k diagnostic.
- Dashed circles are e⁻¹ and e⁻² amplitude of microwave beam.
- Scattering location and scattering volume extent are within GYRO simulation domain.

Mapped Experimental Wavenumbers in GYRO Density Spectra

- (k_r, k_θ)^{exp} are closer to the spectral peak of fluctuations than previously thought
 → more transport relevant!
- Black dots: scattering $(k_r, k_{\theta})^{exp}$ for channels 1,2,3

Outline

- Motivation
- Old high-k scattering system at NSTX
- The GYRO code
- Previous Work on synthetic high-k
- New Synthetic Diagnostic for the high-k scattering system
 - 1. Coordinate mapping (this talk)
 - 2. Filtering (ongoing work)

Results from Coordinate Mapping

- 1. Old high-k system
- 2. New high-k system

Operating Space of New High-k Scattering Diagnostic

 A new high-k scattering system is being designed to detect streamers based on previous predictions: Old high-k system: high-k_p, intermediate k_θ

New high-k system: high- k_{θ} , intermediate $k_r \rightarrow$ streamers

- My goal: project the operating space of the new high-k scattering diagnostic using the mapping I implemented.
- **Disclaimer**: k-mapping of new high-k scattering system is based on:
 - Experimental turbulence wavenumbers from previous studies (Barchfeld APS 2015, UC-Davis/NSTX-U Review of Fluct. Diagnostics May 2016).
 k_Z = 7-40 cm⁻¹
 k_R = 0 cm⁻¹
 → High-k_θ scattering diagnostic.
 - 2. Current plasma conditions (B ~ 0.5 T, T_e ~ 0.4 keV).

Mapped Wavenumbers of New High-k to GYRO 2D Fluctuation Spectrum

- Black dots: old hk
- <u>White dots</u>: new hk Picked k's in predicted measurement range $k_Z = 7, 18, 29, 40 \text{ cm}^{-1}$ $k_R = 0 \text{ cm}^{-1}$
 - Blue star: streamers

26

Mapped Wavenumbers of New High-k to GYRO 2D Fluctuation Spectrum

NSTX-U

NSTX-U Science Meeting, Dec 5 2016

Mapped Wavenumbers of New High-k Diagnostic to GYRO k_{θ} Fluctuation Spectrum

- Spectrum is integrated in k_r.
- Lowest-k channel will be closest to peak of fluctuation spectrum (streamers) k_R=0, k₇=7 cm⁻¹
- Need to resolve very high-k ($k_{\theta}\rho_{s}$ ~ 50) to capture highest-k channel.
- Red band: measurement range of old system.
- Gray bands: measurement range of new system.

Future Work and Conclusions on Synthetic Diagnostic Implementation

Future work

- Implementation of selectivity function and filtering.
- Use syn. diagnostic for quantitative comparisons with experiment.
- Can apply mapping to project operating space of additional scattering diagnostics (e.g. DBS).

Conclusions

- Computationally expensive simulations are needed to simultaneously resolve full ETG spectrum and experimental k in old high-k system (not in the new system).
- Old high-k system is sensitive to k that are closer to the spectral peak of fluctuations than previously thought → more transport relevant!
- New high-k system could detect streamers in lowest-k channel.
- For the first time, we're getting *close* to a quantitative comparison experiment-simulation of electron scale turbulence in NSTX and NSTX-U.
 → Important step to understand electron thermal transport in NSTX-U!

This work is supported by US. D.O.E. Contract No. DE-AC02-09CH11466. Computer simulations were carried out at the National Energy Research Scientific Computing Center, US. D.O.E. Contract No. DE-AC02-05CH11231.

Back-up slides

Spherical Tokamaks such as NSTX Exhibit High Levels of Toroidal Rotation

Standard tokamak

Spherical tokamak (ST)

- Spherical tokamaks are more compact than standard tokamaks: easier to drive toroidal rotation.
- Toroidal rotation gives rise to perpendicular flows (ω_{ExB} shearing rate) \rightarrow important key parameter in turbulence and transport.

Use a High-k Scattering Diagnostic to Probe Electron Scale Turbulence in NSTX and NSTX-U

Gyrokinetics is the Leading Theory that Describes Turbulence and Transport in Fusion Plasmas

- Start with Fokker-Planck equation + Assume: $k_{\perp}\rho_i \sim 1$ $\omega/\omega_{ci} << 1$
- Gyroaverage \rightarrow remove gyrophase coordinate!

- Arrive to the gyrokinetic-Maxwell system: 5D, nonlinear system of coupled equations: unknowns
 - perturbed distribution function of species s
 - perturbed electromagnetic field components

h_s $\delta \phi$, δA_{\parallel} , δB_{\parallel}

Real Space Mapping: $(R, Z, \phi) \rightarrow (r, \theta, \phi)$

• Start from expression of $R(r,\theta)$, $Z(r,\theta)$. Ex: Miller-like equilibrium

 $\begin{cases} R(r,\theta) = R_0(r) + r * \cos(\theta + \arcsin(\delta(r))\sin(\theta)) \\ Z(r,\theta) = Z_0(r) + r * \kappa(r) * \sin(\theta + \zeta(r)\sin(2\theta)) \end{cases}$

κ elongation
δ triangularity
ζ squareness

• Given (R_{loc} , Z_{loc}): Determine (r_{loc} , θ_{loc}) by nonlinear solve of

 $\begin{cases} R(r_{loc}, \theta_{loc}) = R_{loc} \\ Z(r_{loc}, \theta_{loc}) = Z_{loc} \end{cases}$

• Next: determine k-mapping

Wavenumber Mapping: $(k_R, k_Z) \rightarrow (k_r, k_\theta)$

Mapping (k_R, k_Z) → (k_r, k_θ) is done using the GYRO definitions of k + transformation of coordinate systems.
 Result is:

$$\begin{cases} k_{\rm r} - \frac{r}{q} \frac{\partial v}{\partial r} k_{\theta} = \frac{\partial R}{\partial r} k_{R} + \frac{\partial Z}{\partial r} k_{Z} \\ - \frac{r}{q} \frac{\partial v}{\partial \theta} k_{\theta} = \frac{\partial R}{\partial \theta} k_{R} + \frac{\partial Z}{\partial \theta} k_{Z} \end{cases}$$

- Need to compute $\partial R/\partial r$, $\partial R/\partial \theta$, $\partial Z/\partial r$, $\partial Z/\partial \theta @ (r_{loc}, \theta_{loc})$
- Given $(k_R, k_Z)^{exp}$ (ray-tracing), will obtain $(k_r, k_{\theta})^{exp}$ in GYRO coordinates!

Summary of Coordinate Mapping

The mapping in real-space: obtain (r_{loc}, θ_{loc}) from (R_{loc}, Z_{loc})

$$\begin{cases} R(r_{loc}, \theta_{loc}) = R_{loc} \\ Z(r_{loc}, \theta_{loc}) = Z_{loc} \end{cases}$$

The mapping in k-space: obtain (k_r, k_{θ}) from $(k_R, k_Z)^{exp}$

$$\begin{cases} k_{\rm r} - \frac{r}{q} \frac{\partial v}{\partial r} k_{\theta} = \frac{\partial R}{\partial r} k_{R} + \frac{\partial Z}{\partial r} k_{Z} \\ - \frac{r}{q} \frac{\partial v}{\partial \theta} k_{\theta} = \frac{\partial R}{\partial \theta} k_{R} + \frac{\partial Z}{\partial \theta} k_{Z} \end{cases}$$

New High-k Scattering System was Designed to Detect Streamers based on Previous Predictions

- Old high-k system: high- k_r , intermediate k_{θ}
- New high-k system: high-k_{θ}, intermediate k_r \rightarrow streamers
- y-axis scales are different, x-axis scales are similar

New High-k Scattering System was Designed to Detect Peak in Fluctuation Amplitude: streamers

- Old high-k system: high- k_r , intermediate k_{θ}
- New high-k system: high-k_{θ}, intermediate k_r \rightarrow streamers

Standard Electron Scale Simulation Captures Correctly Wavenumbers Detected by New High-k System

- k_{θ} values are restricted to [-5,5]
- k_r shown are full simulated spectrum.
- A big-box e- scale simulation is not needed to resolve spectrum of new high-k system.

Given from experiment (ray tracing)

 $k_R = -1857 \text{ m}^{-1}$, $k_Z = 493 \text{ m}^{-1}$ (channel 1 of high-k diagnostic, shot 141767, t = 398 ms)

Get from GYRO (internally calculated)

- $(\rho_s)_{GYRO} \sim 0.002 \text{ m} (B_unit \sim 1.44)$
- |∇r| ~ 1.43, κ ~ 2

Apply k-mapping : close to the midplane, use simplified approx.

$$\begin{cases} (k_r \rho_s)_{GYRO} = k_R * (\rho_s)_{GYRO} / |\nabla r| \\ (k_{\theta} \rho_s)^{loc} = k_Z * \kappa * (\rho_s)_{GYRO} \end{cases}$$

Obtain experimental wavenumbers mapped to GYRC

$$(\kappa_n \rho_s)_{\text{GYRO}} \sim -2.0$$

 $(k_\theta \rho_s)^{loc} \sim 2.0 \Rightarrow (k_\theta \rho_s)_{\text{GYRO}} \sim 5$

Past Work on NSTX H-mode Plasma Showed Stabilization of e- scale Turbulence by Density Gradient

- NSTX NBI heated H-mode featured a controlled current ramp-down. Shot 141767.
- An increase in the equilibrium density gradient was correlated to a decrease in high-k density fluctuation amplitude (measured by a high-k scattering system). *cf.* Ruiz Ruiz PoP 2015.

Experiment, Linear and Nonlinear Gyrokinetic Simulation Showed Density Gradient Stabilization of e- scale Turbulence

- Experimental k-spectrum is measured with a high-k scattering diagnostic (*cf.* Smith RSI 2008).
- Peak amplitude in experimental k-spectra, linear growth rate and nonlinear electron heat flux using gyrokinetic simulation is reduced, and shifted to higher wavenumber with increasing density gradient.

Probe Origins of Anomalous Electron Heat Flux Using Two Different Approaches:

1. Revisit the assumption:

'Ion scale turbulence is suppressed by ExB shear in NSTX NBI heated Hmode plasmas'.

Approach: Identify ion scale instability and ion scale turbulence contributions to Q_e using linear and nonlinear gyrokinetic simulation (GYRO).

2. To what level of confidence do we trust transport predictions from previous escale simulations?

Approach: **Develop a synthetic high-k scattering diagnostic** for quantitative comparisons between electron scale turbulence measurements and nonlinear GYRO simulations.

Prerequisites to Coordinate Mapping

We want to perform:

- coordinate mapping GYRO (r, θ, φ)
- wavenumber mapping $(k_n \rho_s, k_{\theta} \rho_s)_{GYRO}$

Prerequisites

- Units: r[m], R[m], Z[m], $\theta, \phi \in [0, 2\pi]$
- GYRO definition of k_{θ}^{loc} and k_{θ}^{FS}

$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r}\frac{\partial v}{\partial \theta}, \quad k_{\theta}^{FS} = \frac{nq}{r}$$

Consistent with GYRO definition of flux-surface averaged k_{θ}^{FS} =nq/r (*cf.* backup)

• Wavenumber mapping under simplifying assumptions

$$k_{R} = (k_{r}\rho_{s})_{GYRO} \left|\nabla r\right| / (\rho_{s})_{GYRO}$$

$$k_{Z} = (k_{\theta} \rho_{s})_{GYRO}^{loc} / (\kappa . \rho_{s})_{GYRO}$$

- Miller-like parametrization
- $\zeta=0$, $d\zeta/dr=0$ (squareness)
- $Z_0=0$, $dZ_0/dr=0$ (elevation)
- UD symmetric (up-down symmetry) \rightarrow (θ =0)

←→ physical (R, Z,
$$φ$$
)
←→ (k_R, k_z)

Numerical Resolution Comparison with Traditional Ion Scale, Electron Scale and Multiscale Simulation

Poloidal wavenumber resolution ($k_{\theta}\rho_{s}$ here means $k_{\theta}\rho_{s}^{FS}$)

	$\Delta k_{\theta} \rho_s$	$k_{\theta} \rho_s^{max}$	n #tor. modes
lon scale	~0.05	~1	~20-30
e- scale	~1-1.5	~50	~50
Multi-scale	~0.1	~40	~500
Big-box e- scale	0.3	43	142

Radial resolution Δr – radial box size L_r

	Δr	L _r	n _r radial grid
lon scale	$\sim 0.5 \ \rho_s$	~80-100 ρ _s	~ 200
e- scale	~ 2 p _e	~ 6-8 ρ _s	~ 200
Multi-scale	~ 2 ρ _e	~ 40-60 ρ _s	~ 1500
Big-box e- scale	2.5 ρ _e	20 ρ _s	512

Input Parameters into Nonlinear Gyrokinetic Simulations Presented

	t=398 t	= 565			
r/a	0.71	0.68	R _o /a	1.52	1.59
a [m]	0.6012	0.596	SHIFT =dR ₀ /dr	-0.3	-0.355
n _e [10^19 m-3]	4.27	3.43	KAPPA = κ	2.11	1.979
T _e [keV]	0.39	0.401	s _k =rdln(κ)/dr	0.15	0.19
a/L _{ne}	1.005	4.06	DELTA = δ	0.25	168
a/L _{Te}	3.36	4.51	s _δ =rd(δ)/dr	0.32	0.32
β_e^{unit}	0.0027	0.003	Μ	0.2965	0.407
a/L _{nD}	1.497	4.08	Υ _E	0.126	0.1646
a/L _{Ti}	2.96	3.09	γ _p	1.036	1.1558
T _i /T _e	1.13	1.39	ρ*	0.003	0.0035
n _D /n _e	0.785030	0.80371	λ _D /a	0.000037	0.0000426
n _c /n _e	0.035828	0.032715	c _s /a (10 ⁵ s-1)	4.4	2.35
a/L _{nC}	-0.87	4.08	Qe (gB)	3.82	0.0436
a/L _{TC}	2.96	3.09	Qi (gB)	0.018	0.0003
Z _{eff}	1.95	1.84			
nu _{ei} (a/c _s)	1.38	1.03			
q	3.79	3.07			
S	1.8	2.346			

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_Z)^{exp}$

We want to perform:

- coordinate mapping GYRO (r, θ, φ)
- wavenumber mapping $(k_n \rho_s, k_{\theta} \rho_s)_{GYRO}$

Preamble 1

- Units: r[m], R[m], Z[m] $\theta, \phi \in [0, 2\pi]$
- GYRO definition of k_{θ}^{loc} and k_{θ}^{FS}

$$ik_{\theta}^{loc}(r,\theta) = \frac{1}{r}\frac{\partial}{\partial\theta} \Longrightarrow k_{\theta}^{loc}(r,\theta) = -\frac{n}{r}\frac{\partial\nu}{\partial\theta} \qquad \text{(To be shown in slide 17)}$$

 $\leftarrow \rightarrow$ physical (R, Z, φ)

 $\leftarrow \rightarrow (k_R, k_7)$

Consistent with GYRO definition of flux-surface averaged $k_{\theta}^{FS}=nq/r$ (*cf.* out.gyro.run)

$$k_{\theta}^{FS} = \frac{1}{2\pi} \int_{0}^{2\pi} k_{\theta}^{loc} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} -\frac{n}{r} \frac{\partial v}{\partial \theta} d\theta = \left(-\frac{n}{r}\right) \frac{v(r, 2\pi) - v(r, 0)}{2\pi} = \frac{nq(r)}{r}$$

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_Z)^{exp}$

Preamble 2 why is
$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r} \frac{\partial v}{\partial \theta}$$
 ??
GYRO decomposition of fields

$$\delta\phi(r,\theta,\alpha) = \sum_{j=-Nn+1}^{Nn-1} \delta\hat{\phi}_n(r,\theta) e^{-in\alpha} e^{in\overline{\omega}_0 t} = \sum_{j=-Nn+1}^{Nn-1} \delta\phi_n(r,\theta), \quad \alpha = \varphi + \nu(r,\theta)$$

Set ϕ =0 and ω_0 = 0. Focus on transformation of one toroidal mode n. By definition of k_{θ}^{loc}

$$ik_{\theta}^{loc}\delta\phi_{n}(r,\theta) = \frac{1}{r}\frac{\partial}{\partial\theta}(\delta\phi_{n}(r,\theta)) = \frac{1}{r}\frac{\partial}{\partial\theta}(\delta\hat{\phi}_{n}(r,\theta)e^{-in\nu(r,\theta)}) = \frac{1}{r}\frac{\partial}{\partial\theta}(\delta\hat{\phi}_{n}(r,\theta)e^{-in\nu(r,\theta)}) = \frac{1}{r}\frac{\partial}{\partial\theta}e^{-in\nu} + \delta\hat{\phi}_{n}\left(-in\frac{\partial\nu}{\partial\theta}e^{-in\nu}\right) \Longrightarrow \delta\phi_{n}(r,\theta)\left(\frac{-in}{r}\frac{\partial\nu}{\partial\theta}\right)$$

Conclusion: we assume definition of k_{θ}^{loc} is **correct**. There is a one-to-one relation between n and k_{θ}^{loc} .

$$k_{\theta}^{loc}(r,\theta) = -\frac{n}{r} \frac{\partial v}{\partial \theta}$$

NSTX-U

NSTX-U Science Meeting, Dec 5 2016

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_7)^{exp}$

Preamble 3 Wavenumber mapping under simplifying assumptions

$$k_{R} = (k_{r}\rho_{s})_{GYRO} \left|\nabla r\right| / (\rho_{s})_{GYRO}$$

$$k_{Z} = (k_{\theta} \rho_{s})_{GYRO}^{loc} / (\kappa . \rho_{s})_{GYRO}$$

- Assumptions
 - $-\zeta=0$, d ζ /dr=0 (squareness + radial derivative)
 - $Z_0 = 0$, $dZ_0/dr = 0$ (elevation + radial derivative)
 - UD symmetric (up-down asymmetry of flux surface)
- In the following slides, develop mapping when assumptions are not satisfied, invert
 (R(r A) Z(r A))=(R Z) (r A)

 $(\mathsf{R}(\mathsf{r},\theta),\mathsf{Z}(\mathsf{r},\theta))=(\mathsf{R}_{\exp},\mathsf{Z}_{\exp}) \rightarrow (\mathsf{r}_{\exp},\theta_{\exp})$.

Principle of Geometric Mapping is Independent of Flux Surface Parametrization

Computation of metric coefficients

- Whether you use a Model Grad-Shafranov equilibrium (GS, Miller-type) or a general equilibrium (Fourier), procedure is the same.
- In cases shown here, I use GS equilibrium.
 - In GYRO simulation, I use input parameters THETA_PLOT=8, THETA_MULT=128 (fine poloidal grid).
 - Get r[m] from out.gyro.profiles (use a_{ref} !!)
 - − Create a θ array \in [0,2π], size THETA_PLOT*THETA_MULT+1=1025.
 - Define $R(r,\theta)$ and $Z(r,\theta)$ (GS or general eq.). Used GS equilibrium here:

$$R(r,\theta) = R_0(r) + r * \cos(\theta + \arcsin(\delta(r))\sin(\theta)) \quad [m]$$

$$Z(r,\theta) = Z_0(r) + r * \kappa(r) * \sin(\theta + \zeta(r)\sin(2\theta)) \quad [m]$$

How am I sure that these derivatives are computed correctly?
 Comparisons with output from out.gyro.geometry_arrays!

Wavenumber Mapping: $(k_R, k_Z) \rightarrow (k_r, k_\theta)$

- Definitions of k_R , k_Z , k_p , k_{θ}^{loc}
- + Jacobian transformation

$$ik_{R} = \frac{\partial}{\partial R}, \quad ik_{Z} = \frac{\partial}{\partial Z} + \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \frac{\partial R}{\partial r} & \frac{\partial Z}{\partial r} \\ \frac{\partial R}{\partial \theta} & \frac{\partial Z}{\partial \theta} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial R} \\ \frac{\partial}{\partial R} \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial z} \end{pmatrix}$$

$$ik_{r} = \frac{\partial}{\partial r}, \quad ik_{\theta}^{loc} = \frac{1}{r} \frac{\partial}{\partial \theta} + k_{Z} \frac{\partial R}{\partial r}$$

$$k_{\theta}^{loc} = k_{R} \frac{1}{r} \frac{\partial R}{\partial \theta} + k_{Z} \frac{1}{r} \frac{\partial Z}{\partial \theta}$$

- Need to compute $\partial R/\partial r$, $\partial R/\partial \theta$, $\partial Z/\partial r$, $\partial Z/\partial \theta$ @ (r_{loc} , θ_{loc})
- Given k_R^{exp} , k_Z^{exp} , will obtain $(k_r, k_\theta)_{exp}$ in GYRO coordinates!

- Standard e- scale simulation does not accurately resolve experimental k.
- Big-box simulation spectra show well resolved (k_R,k_Z)^{exp} and ETG spectrum.
- Experimental wavenumbers produce non-negligible δn_e and Q_e consistent with previous e- scale simulation results ($Q_e \sim 0.4$ MW).

- Standard e- scale simulation does not accurately resolve experimental k.
- Big-box simulation spectra show well resolved $(k_R, k_Z)^{exp}$ and ETG spectrum.
- Experimental wavenumbers produce non-negligible δn_e and Q_e consistent with previous e- scale simulation results ($Q_e \sim 0.4$ MW).

- Spectra show well resolved $(k_R, k_Z)^{exp}$ and ETG spectrum.
- Experimental wavenumbers produce non-negligible δn_e and Q_e consistent with previous e- scale simulation results ($Q_e \sim 0.4$ MW).

Computed GYRO Geometric Coefficients agree with GYRO output

Conclusion: Agreement between output from out.gyro.geometry_arrays and computed coefficients gives us confidence the mapping is being performed correctly.

Poloidal Cross Section of High-Resolution Electron Scale Simulation

NSTX-U

NSTX-U Science Meeting, Dec 5 2016

Linear Growth Rates for Low-k and High-k Turbulence

- Note ion propagating high-k mode + electron propagating, non-balloning mode at krho~12.
- Microtearing turbulence?

k_{θ} resolution in synhk GYRO sim.

Huge e- scale run for syn hk (tested it in debug! \rightarrow 1h30m for 1 a/cs)

16,488 cores, ~ 24h, 4 open MP threads(4x4,032cores), Edison (x1.2) → 500,000 h (400,000h)

Run for 20 a/cs

Distribution points 495,452,160

Appendix: Compute ($\Delta k_R, \Delta k_Z$) $\rightarrow (\Delta k_r \rho_s, \Delta k_\theta \rho_s)^{GYRO}$

Assume $\Delta k_R = \Delta k_Z = \Delta k = 66.7 \text{ m}^{-1}$

$$\begin{bmatrix} k_r = k_R \frac{\partial R}{\partial r} + k_Z \frac{\partial Z}{\partial r} \\ rk_\theta = k_R \frac{\partial R}{\partial \theta} + k_Z \frac{\partial Z}{\partial \theta} \end{bmatrix} \Rightarrow \begin{bmatrix} (\Delta k_r)^2 = (\Delta k_R)^2 \left(\frac{\partial R}{\partial r}\right)^2 + (\Delta k_Z)^2 \left(\frac{\partial Z}{\partial r}\right)^2 \\ (\Delta k_\theta)^2 = (\Delta k_R)^2 \left(\frac{1}{r} \frac{\partial R}{\partial \theta}\right)^2 + (\Delta k_Z)^2 \left(\frac{1}{r} \frac{\partial Z}{\partial \theta}\right)^2 \end{bmatrix}$$

This assumes beam radius a = 3cm, such that $\Delta k = 2/a = 66.7$ m⁻¹

As a first approximation, assume simplest selectivity function: gaussian is k_r and k_θ

$$F(k_r, k_{\theta}) = F_r(k_r) F_{\theta}(k_r)$$

$$F_r(k_r) = \exp\left(-(k_r - k_r^{\exp})^2 / \Delta k_r^2\right)$$

$$F_{\theta}(k_{\theta}) = \exp\left(-(k_{\theta} - k_{\theta}^{\exp})^2 / \Delta k_{\theta}^2\right)$$

NSTX-U Science Meeting, Dec 5 2016

Appendix: Compute Inverse Derivatives

Start from the coordinate transformation

$$\begin{pmatrix} \delta R \\ \delta Z \end{pmatrix} = \begin{pmatrix} \frac{\partial R}{\partial r} & \frac{\partial R}{\partial \theta} \\ \frac{\partial Z}{\partial r} & \frac{\partial Z}{\partial \theta} \end{pmatrix} \begin{pmatrix} \delta r \\ \delta \theta \end{pmatrix} = J \begin{pmatrix} \delta r \\ \delta \theta \end{pmatrix} \implies \begin{pmatrix} \delta r \\ \delta \theta \end{pmatrix} = J^{-1} \begin{pmatrix} \delta R \\ \delta Z \end{pmatrix}$$

Additionally, we can write the inverse transformation

$$\begin{pmatrix} \delta r \\ \delta \theta \end{pmatrix} = \begin{pmatrix} \frac{\partial r}{\partial R} & \frac{\partial r}{\partial Z} \\ \frac{\partial \theta}{\partial R} & \frac{\partial \theta}{\partial Z} \end{pmatrix} \begin{pmatrix} \delta R \\ \delta Z \end{pmatrix}$$

Compute inverse matrix J⁻¹

$$J^{-1} = \frac{1}{\det J} \begin{pmatrix} \frac{\partial Z}{\partial \theta} & -\frac{\partial R}{\partial \theta} \\ -\frac{\partial Z}{\partial r} & \frac{\partial R}{\partial r} \end{pmatrix}, \quad \det J = \frac{\partial R}{\partial r} \frac{\partial Z}{\partial \theta} - \frac{\partial R}{\partial \theta} \frac{\partial Z}{\partial r}$$

* Recall dRdθ =0* Recall dZ/dr =0

Appendix: Compute Inverse Derivatives

We find

$\int \frac{\partial r}{\partial r}$	$1 \frac{\partial Z}{\partial Z}$
∂R	$\det J \ \overline{\partial \theta}$
∂r	$1 \partial R$
$\int \frac{\partial Z}{\partial Z}$	$\frac{1}{\det J} \frac{\partial \theta}{\partial \theta}$
$\partial \theta$	$1 \partial Z$
∂R	$\frac{1}{\det J} \frac{\partial r}{\partial r}$
$\partial \theta$	1 ∂R
$\left\lfloor \frac{\partial Z}{\partial Z} \right\rfloor$	$\frac{1}{\det J} \frac{1}{\partial r}$

$$\det J = \frac{\partial R}{\partial r} \frac{\partial Z}{\partial \theta} - \frac{\partial R}{\partial \theta} \frac{\partial Z}{\partial r}$$

Steps:

Compute forward derivatives

Compute inverse derivatives

Complete (k_R,k_Z) mapping

- Spectra show well resolved $(k_R, k_Z)^{exp}$ and ETG spectrum.
- Experimental wavenumbers produce non-negligible δn_e and Q_e consistent with previous e- scale simulation results ($Q_e \sim 0.4$ MW).

Conclusions and Future Work on Synthetic Diagnostic

- Implement instrumental selectivity function and wavenumber filtering.
- **Goal**: a direct, quantitative comparison between experiment-GYRO simulation of e- scale turbulence.
 - Compare fluctuation spectrum high-k diagnostic/synthetic high-k.
 - Study energy transfer between different k's (different channels).
- Project operating space of new high-k diagnostic.
 - Are streamers predicted to be detected with the new high-k system?
- Study turbulence characteristics in high-resolution e- scale run → towards multiscale simulation in NSTX-U.
 - High-resolution electron scale runs presented here are NOT multiscale
 - lons are not resolved correctly $\Delta k_{\theta} \rho_s \sim 0.3$, $L_r \propto L_y = 21 \propto 21 \rho_s$.
 - Simulation ran only for electron time scales ($\sim 20a/c_s$), ions are not fully developped.
 - In future, can apply synthetic high-k to multiscale simulation in NSTX-U.

This work is supported by US. D.O.E. Contract No. DE-AC02-09CH11466. Computer simulations were carried out at the National Energy Research Scientific Computing Center, US. D.O.E. Contract No. DE-AC02-05CH11231.

Title here

Column 1

Column 2

Intro

- First level
 - Second level
 - Third level
 - You really shouldn't use this level the font is probably too small

Here are the official NSTX-U icons / logos

NSTX Upgrade NSTX Upgrade NSTX-U NSTX-U National Spherical Torus eXperiment Upgrade **National Spherical Torus experiment Upgrade**

Instructions for editing bottom text banner

Go to View, Slide Master, then select top-most slide - Edit the text box (meeting, title, author, date) at the bottom of the page Then close Master View plate new v1.pptx - Microsoft PowerPe Colors * Delete Aa Title Rename A Fonts -Themes Page Slide Close Setup Orientation * Master View Effects * Click to edit Master title style ick to edit Master text style hird level Click to edit Master title style C ENERGY Click to edit Master text styles - Second level Third level Click to edit Master title styl Fourth level - Tripleral - Tripleral - Facebook » Fifth level - Tractice - Tractice - Tractice - Tractice - Tractice - Tractice -Secret land -Secr Click to edit Master title style - Second Incel - Triglevel - Triglevel - Triglevel - Triglevel **NSTX-U** Meeting name, presentation title, author name, date

NSTX-U

NSTX-U Science Meeting, Dec 5 2016