

Computation of AE stability and saturation through a reduced fast ion transport model in TRANSP

M. Podestà, M. Gorelenkova, N. N. Gorelenkov, R. B. White

NSTX-U Monday Meeting Room B318 - PPPL 01/09/2017

http://nstx.pppl.gov/DragNDrop/Draft_Paper_Review/MPodesta_kick_model_AEstability.pdf

Including effects of Alfvénic modes (AEs) can be important for reliable time-dependent simulations

- NUBEAM/TRANSP now include a reduced, physicsbased model for energetic particles (EP): *kick model*
 - Enables more accurate computation of NB heating, current-drive
 - Enables "numerical experiments" leveraging on TRANSP/ NUBEAM capabilities
- Analysis with TRANSP + kick model has been quite successful to interpret experimental data
 - Thermal profiles from exp't, mode properties from NOVA+exp't
 - Tested on a variety of NSTX/NSTX-U, DIII-D scenarios
- > Can the model be used for <u>predictive</u> AE+EP runs?
 - > What are the pros/cons of the kick model approach?
 - > What are the limitations?

Some definitions...

- Predictive: all quantities are predicted, including thermal profiles, q-profile, unstable spectrum, etc.
- Semi-predictive
- Semi-interpretive
- Typical range of kick model simulations
- Interpretive: all quantities are known (thermal profiles, mode spectrum vs time) -> how is EP population responding?

Some definitions...

- Predictive: all quantities are predicted, including thermal profiles, q-profile, unstable spectrum, etc.
- Semi-predictive Semi-interpretive
- Typical range of kick model simulations
- Interpretive: all quantities are known (thermal profiles, mode spectrum vs time) -> how is EP population responding?

Outline

- Methodology for interpretive vs predictive analysis
 - Inferring linear mode stability
 - Inferring mode saturation amplitude
- Example from NSTX #141711
 - Predictions of AE linear stability, saturation, EP behavior
 - Comparison with experiment
- Future work

Outline

- Methodology for interpretive vs predictive analysis
 - Inferring linear mode stability
 - Inferring mode saturation amplitude
- Example from NSTX #141711

 Predictions of AE linear stability, saturation, EP behavior
 Comparison with experiment
- Future work

Power balance is the key for kick model analysis in NUBEAM/TRANSP

Consider evolution of mode energy, E_w

Introduce 'growth rate' in analogy with damping rate:

$$\gamma_{gr}(E_w) \doteq \frac{P_{EP}(E_w)}{2E_w} \Rightarrow \frac{\partial E_w}{\partial t} = 2\left[\gamma_{gr} - \gamma_{damp}\right] E_w$$

- In the limit of vanishing mode amplitude (linear phase)

- In the limit of vanishing dE_w/dt , finite E_w (saturated phase)

 $\gamma_{gr}(E_w) - \gamma_{damp} \to 0 \implies E_w \to E_w^{sat} \iff \text{saturation amplitude}$

Power balance is the key for kick model analysis in NUBEAM/TRANSP

Consider evolution of mode energy, E_w

Introduce 'growth rate' in analogy with damping rate:

$$\gamma_{gr}(E_w) \doteq \frac{P_{EP}(E_w)}{2E_w} \Rightarrow \frac{\partial E_w}{\partial t} = 2\left[\gamma_{gr} - \gamma_{damp}\right] E_w$$

- In the limit of vanishing mode amplitude (*linear* phase)

- In the limit of vanishing dE_w/dt , finite E_w (saturated phase)

$$\gamma_{gr}(E_w) - \gamma_{damp} \to 0 \Rightarrow E_w \to E_w^{sat} \iff \text{saturation amplitude}$$

Linear growth rate and saturation amplitude can be inferred from $P_{EP}(E_w)$ characteristic

TRANSP run: sweep mode amplitude $\sim sqrt(E_w)$, record power from EPs to the mode

Build $P_{EP}(E_w)$ curve, infer γ_{lin} and saturation amplitude

Linear growth rate and saturation amplitude can be inferred from $P_{EP}(E_w)$ characteristic

TRANSP run: sweep mode amplitude $\sim sqrt(E_w)$, record power from EPs to the mode

Build $P_{EP}(E_w)$ curve, infer γ_{lin} and saturation amplitude

Outline

- Methodology for interpretive vs predictive analysis
 - Inferring linear mode stability
 - Inferring mode saturation amplitude
- Example from NSTX #141711 – Predictions of AE linear stability, saturation, EP behavior – Comparison with experiment
- Future work

Target scenario: NSTX #141711

NB-heated L-mode featuring robust TAE activity

> Neglect TAE avalanches in this work

Target scenario: NSTX #141711

NSTX-U

AE stability through the kick model in TRANSP – M. Podestà, 01/09/2017

NOVA analysis provides ~50 candidate modes with toroidal mode numbers n=1-8

- NOVA finds *all* eigenmodes for given toroidal mode number/frequency range regardless of their stability
- 'Linear' kick model analysis identifies 9 unstable modes with n=2-7

On average, kick model computes 2x larger γ_{lin} than NOVA-K

- Difference likely due to different fast ion distribution, lack of sources/sinks in NOVA-K
- FLR effects not included in ORBIT (-> kick model)

- Inferred growth rates, saturation amplitudes are upper limit

Saturation amplitudes are δB_r/B~10⁻⁴-10⁻³ for weakly bursting/chirping phase

• Divide 9 unstable modes into two sets, n=2-7

- Amplitude =1 corresponds to $\delta B_r/B=5x10^{-4}$
- Inferred saturation amplitudes appear reasonable, based on previous analysis
 - $-\delta n/n$ from UCLA reflectometer
- Results can vary considerably if different damping rates are used

TRANSP computes similar neutron deficit for the two sets of 'unstable' modes

AE stability through the kick model in TRANSP – M. Podestà, 01/09/2017

Summary of *semi-predictive* kick model analysis

- Kick model can be used for semi-predictive analysis
 - Requires thermal profiles
 - Requires candidate modes (, damping rates) from NOVA/NOVA-K
- NUBEAM/TRANSP implementation has several advantages over single-time-slice analysis
 - Provides well-diagnosed time-dependent simulations
 - (Classical) sources, sinks are accurately simulated
 - Integrates non-classical EP effects into whole discharge simulation
- Main limitations:
 - Relies on other codes to infer mode structure, damping rates
 - Best suited for slowly varying background profiles $(I_{p}, q(r))$
 - Requires additional analysis to "predict" bursting/chirping modes (cf. recent work by Duarte, Berk, Gorelenkov)

Outline

- Methodology for interpretive vs predictive analysis
 - Inferring linear mode stability
 - Inferring mode saturation amplitude
- Example from NSTX #141711

 Predictions of AE linear stability, saturation, EP behavior
 Comparison with experiment

• Future work

Predicted unstable spectrum is in reasonable agreement with measurements

- Experiment shows a rich spectrum:
 - TAEs, low-f MHD (, EHO?)
- Predicted spectrum looks ~OK
- Frequency (NOVA) shifted up by ~10-20kHz, probably due to choice of γ_{adiab}
- NOVA-K finds similar unstable spectrum *if FLR effects are neglected*
- NOVA-K seems to underestimate γ_{lin} when FLR effects are included

NSTX-U

(Average) predicted saturation amplitude is within x2-3 from measurements

NSTX-U

AE stability through the kick model in TRANSP – M. Podestà, 01/09/2017

Including bursting behavior & iterating to match neutron rate brings $\delta n/n$ closer to measurements

- Infer bursts from Mirnov coils
- Iterate TRANSP runs to match measured neutrons
- Also include n=1 from modemode coupling (exp't evidence)

Interpretive TRANSP runs lead to closer match with experiment

AE stability through the kick model in TRANSP - M. Podestà, 01/09/2017

Summary of (semi-)interpretive kick model analysis

- Additional information from actual experiment greatly improves kick model results
- In most cases, actual analysis is a mix of prediction/ interpretation
 - E.g. mode amplitude(s) known at limited times, then 'extrapolate' based on match with neutrons
- Overall, semi-interpretive analysis works well for NSTX/NSTX-U, DIII-D scenarios
 - Promising results so far, including 'counter-TAE' case with off-axis NB2A (NSTX-U #203609)
 - Initial comparison with extended set of EP diagnostics (neutrons, FIDA, NPA, mode amplitudes) looks very promising (Heidbrink, PoP 2016 - submitted)

Outline

- Methodology for interpretive vs predictive analysis
 - Inferring linear mode stability
 - Inferring mode saturation amplitude
- Example from NSTX #141711

 Predictions of AE linear stability, saturation, EP behavior
 Comparison with experiment
- Future work

Outlook

- Analysis procedure has been established moving on to more extensive validation
 - Target NSTX/NSTX-U and DIII-D scenarios to cover broad range of experimental conditions
 - Include comparison with FIDA, NPA, possibly sFLIP/FILD
- Mid-term: exploit kick model infrastructure in NUBEAM to implement CGM/RBQ model in TRANSP (Gorelenkov)
- Longer term developments:
 - Extend kick model to 3D-fields effects
 - May require some modifications to the code (NUBEAM)
 - Would enable time-dependent analysis with sources/sinks
 - Include gyro-averaging effects as 'default' (ORBIT)
 - Remove constraint on μ =const: extend to high-f CAEs/GAEs
 - Extend computation of kick probabilities to full-orbit codes (SPIRAL, others)

Backup

27

Kick model enables *numerical experiments* for scenario development, e.g. to optimize NB mix

Computed growth rate varies with NB tangency radius

No obvious correlation found...

Diagnostics in TRANSP are crucial to unfold complex dependence NBI <-> TAE stability

NSTX-U

AE stability through the kick model in TRANSP – M. Podestà, 01/09/2017

Kick model analysis recovers transition from coto cntr-TAEs during off-axis NBI (all preliminary!)

NSTX-U

AE stability through the kick model in TRANSP – M. Podestà, 01/09/2017

Comparison of some reduced models used for EP transport

		ad-hoc D _{fi}	CGM model (*)	'kick' model
physics-based		no	yes	yes
required input		D _{fi} (ρ,t)	growth/damping rates	probability, mode amplitude
applicability	,			
	multi-mode	indirectly	multiple AEs	AEs, kinks, NTMs. Fishbones/ EPMs?
	steady-state	yes	yes	yes
	transients	yes	OK for $\tau > \tau_{relax}$	yes
phase-space selectivity		modest	no(t yet)	yes
predictive runs		requires guess D _{fi}	requires mode spectrum: growth/damping	requires mode spectrum, damping
improvemen	nts	none planned	extend to 2D in velocity space	remove µ conservation

(*) CGM – <u>Critical Gradient Model</u>, see IAEA-FEC 2014: Gorelenkov TH/P1-2, Heidbrink EX/10-1

31

Kick model vs Critical Gradient model

New 'kick model' uses a probability distribution function to describe particle transport in (E,P $_{\xi}$, μ) space

🚺 NSTX-U

AE stability through the kick model in TRANSP – M. Podestà, 01/09/2017

33

$p(\Delta E, \Delta P_{\zeta}|P_{\zeta}, E, \mu)$ and a time-dependent 'mode amplitude scaling factor' enable multi-mode simulations

- Example: toroidal AEs (TAEs) and low-frequency kink
- $p(\Delta E, \Delta P_{\xi}|P_{\xi}, E, \mu)$ from particlefollowing code ORBIT
- Each type of mode has separate $p(\Delta E, \Delta P_{\zeta}), A_{mode}(t)$
- TAEs and kinks act on different portions of phase space
- Amplitude vs. time can differ, too
- Effects on EPs differ
 TAEs: large ΔE, ΔP_ζ
 kinks: small ΔE, large ΔP_ζ

AE stability through the kick model in TRANSP – M. Podestà, 01/09/2017

34

Accurate computation of mode structure is critical for reliable kick model analysis

- Main source of uncertainty in kick model runs comes from selection of candidate modes
- Example: ideal MHD doesn't resolve intersection with AE continuum
- Discontinuity in mode structure propagates to kick probability, e.m. energy associated with the mode

Scheme to advance fast ion variables according to transport probability in NUBEAM module of TRANSP

NSTX-U

AE stability through the kick model in TRANSP – M. Podestà, 01/09/2017

36