

Startup development for MAST-U Devon Battaglia

Thanks to CCFE MAST-U team, especially: Andrew Thornton, Andrew Kirk, Lucy Kogan

NSTX-U Monday Science Meeting September 25, 2017

Outline

- Overview of MAST-U and NSTX-U scenario and control collaboration
- Review of NSTX-U startup calculations
- Comparison between LRDFIT calculations and MAST results
- Predictive startup calculations for MAST-U

MAST-U and NSTX-U are STs that have complementary scientific missions

- MAST-U has unique divertor configuration
 - Novel closed Super-X divertor concept to isolate divertor from main chamber
 - Leverage ST configuration for divertor optimization studies at high heat flux
- NSTX-U has unique heating and current drive flexibility at high field
 - Explore confinement and stability at high noninductive fraction
 - Inform aspect ratio optimization of future devices

	MAST-U (stage 1a)	NSTX-U (full field)
Max I _p (MA)	2.0	2.0
Max B _T at 0.93 m (T)	0.685	1.0
NBI (MW)	5 (75 keV)	12 (90 keV)
t _{pulse} at full field (s)	2	5

NSTX-U

MAST-U Operations planned for 2018

- Phase 1: Pump Down, bake prep
 - Successfully pumped down to target vessel pressure
 - Aim to be ready to bake: October, 2017
- Phase 2: Vessel bake
 - Two stages of bake, first without windows, then with windows
 Complete gas calibration (24 out of 76 total injectors!)
- Phase 3: Integrated power supply testing
 - Includes first use of PCS and magnetics calibrations
- Phase 4: Plasma Startup
 - Target 100 kA limited plasma
 - Develop equilibrium reconstruction
 - Spring, 2018

Picture of centre column, nose and divertor armour

MAST-U Operations planned for 2018

- Phase 5: Limiter plasma -0.5 MA for > 0.2 s flattop with outer gap control, start EFC Phase 6: Conventional Divertor – Elongate, push l_i lower with NBI, ramp-up optimization, L-H transition - Tune vertical control to extend elongation - Tune PCS for boundary control - Continue EFC, fueling optimization - Condition surfaces Phase 7 – 9: Demonstrate and leverage extended outer divertor leg
 - Second half of 2018

Collaboration on Scenario and Control development between MAST-U and NSTX-U

- ST devices have common goals for optimizing startup and rampup scenarios
 - Develop robust and flexible startup scenarios
 - Assisted by active feedback control (vertical stability, shape, density ...)
 - Maintain broad current profiles (low I_i) during ramp-up
 - Increase κ , delay or avoid $q_0 = 1$ instabilities ...
 - Minimize flux consumption of startup
- Collaboration aims to develop similar models and metrics for optimizing startup and control
 - Enables more effective sharing of knowledge and work
 - Accelerate progress on demonstrating advanced scenarios and control

Visited CCFE this summer to begin to participate in MAST-U startup process

- Examined tools for planning startup scenarios for MAST-U
 - FIESTA (MATLAB) code: used for scenario development on MAST
 - Code support and MATLAB license posed issues for the future
 - LRDFIT (IDL) code was chosen as a shared tool for vacuum field calculations
 - Code maintained by PPPL, many IDL users at CCFE
- Ported LRDFIT code to CCFE and demonstrated vacuum field calculations for comparison to MAST data
- Demonstrated utility of LRDFIT as a planning and control room tool for magnetic calibrations and startup development
- Began predictive calculations for MAST-U startup
 First customer for device description files needed for EFIT
- Wrote a User's Guide and trained MAST-U team members on performing vacuum field calculations with LRDFIT

- Multiple users now producing results and motivating code development

Outline

- Overview of MAST-U and NSTX-U scenario and control collaboration
- Review of NSTX-U startup calculations
- Comparison between LRDFIT calculations and MAST results
- Predictive startup calculations for MAST-U

Inductive startup on NSTX-U uses a single PF coil set to null solenoid field

Inductive startup on NSTX-U uses a single PF coil set to null solenoid field

- Solenoid provides confining B_Z
 - Bipolar PF3 coils null this field
 - $-V_{loop}$ via ramping OH and PF3 fields
- Null field sensitive to induced wall currents
 - About 200 kA passive toroidal current in conducting structures at breakdown
- PF3 and PF5 coils provide additional B_p following breakdown – Must maintain passive R and Z stability

Vacuum field portion of LRDFIT used to develop startup scenarios for NSTX-U

- LRDFIT: LR circuit model with Data FITting capabilities
- Written by Jon Menard as a tool for computing Grad-Shafranov equilibria (GSE) with magnetic and kinetic constraints

 Code is primarily written in the IDL language
- Contains a user interface for drawing coil currents in order to calculate the vacuum field structure including wall currents

- This capability enables a platform for predictive calculations

- LRDFIT can also compute GSE solutions
 - Wall currents computed using an SVD fit to magnetics
 - Plasma is treated as resistive conducting elements
 - Multiple GSE solutions calculated in parallel
 - Fixed evolution for wall currents removes time-dependency
 - SVD solution provides an initial poloidal flux distribution that is close to the final result

LRDFIT is a popular analysis tool at NSTX-U

- Calibrate magnetics and improve wall model
 - Develop 2D wall model based on CAD drawings
 - Run vacuum shots and compare measurements to model
 - Evaluate discrepancies ... is it the sensors or the wall model?
 - Wall model and magnetics important for EFIT calculations
- Develop recipe for breakdown scenario
 - Maintain null timing, good field index and dBz/dt for different $I_{\rm OH}$ precharge and target $V_{\rm loop}$
 - Evaluate wall currents for different precharge scenarios
 - Develop targets for first plasma attempts
- LRDFIT is a second tool for computing GSE solutions
 - LRDFIT provides researchers an easy way to tinker with GSE solutions
 - Although OMFIT is now providing a similar capability
 - For example, launch a bunch of GSE solutions with different constraints

LRDFIT calculations for NSTX-U used to evaluate startup scenarios

20

How should I_{PF3} change with V_{loop} and I_{OH} to achieve desired null timing, null quality, field index and B_Z/dt ?

(a)

Construction milestone satisfied on ninth discharge attempt

- First few shots showed null timing was late

 Null timing inferred from magnetics
- Once flash of light was around t = 0, increased V_{loop}
 - Required changes to PF3 to keep null timing the same
- Last two shots, change updown balance
- Later in the run, the first shot that increased I_{OH} from 8 kA to 20kA worked

Goal: Support development of MAST-U startup using similar calculations

- MAST primarily relied on merging-compression startup
 - Targeted experiments on MAST demonstrated "direct induction" (DI) startup in preparation for MAST-U

• MAST-U will use DI startup

- Calculations were completed using FIESTA during design phase to demonstrate null formation within coil current and stress limits
 - Calculations did not include induced wall current
 - Calculations did not connect precharge breakdown rampup phases
- Desire to evaluate expected V_{loop} requirement
 - Filament pre-ionization system planned for the first campaign
- MAST-U team has been welcoming of participation in planning and execution of startup activities

Outline

- Overview of MAST-U and NSTX-U scenario and control collaboration
- Review of NSTX-U startup calculations
- Comparison between LRDFIT calculations and MAST results
- Predictive startup calculations for MAST-U

LRDFIT configured to calculate vacuum fields for MAST

- Ported LRDFIT to the CCFE computer system
 - First time LRDFIT has been run outside of PPPL
 - Remove/replace NSTX specific code
 - Write I/O needed for MAST device
- Develop device description for MAST
 - Two versions existed for two codes: EFUND and EFIT++
 - EFUND used to estimate wall currents as a constraint to EFIT ++
- Compare vacuum field calculations to magnetic measurements to demonstrate the utility of LRDFIT

LRDFIT vacuum field calculation can help refine the device description

- Overall, agreement between LRDFIT calculations and MAST vacuum field data was very good
- Largest disagreement was induced P3 case current
 - P3L 70% lower resistance than stainless steel
 P3U 200% higher resistance than stainless steel

LRDFIT is a valuable tool for interpreting startup results

- Presented at the MAST-U Session Leader training course on startup
 - Session leader (MAST) = Physics Operator (NSTX)
- Illustrated how a startup scenario could be evaluated using diagnostics and LRDFIT
- Further demonstration that the code and 2D wall model are in good shape for MAST calculations

MAST conducted experiments to demonstrate DI startup

- Only two coil sets available to provide nulling field
 - P2: Unipolar pos. current
 - -P3: Cap bank pos. current
- Lowest V_{loop} DI startup scenarios used static P3 to null solenoid fringe field
 Form null, then ramp P4 & P5

First light at +1 ms near center column

NSTX-U

At + 2 ms, a decent null, but field on inboard edge is the wrong direction

Flashlamp at 3 ms increases ionization, but B_z still in the wrong direction inboard of null

P4 and P5 ramp starts at 3 ms, pushes null inwards

Camera suggests stable current channel first forms in null above midplane

Closed flux surfaces can form with correct B_z direction on inboard edge of null

NSTX-U

Lloyd criteria similar to NSTX and NSTX-U

Camera images suggests plasma diverts or limits on outboard surfaces from about 6 - 12 ms

P3L forms the primary X-point Consistent with more positive case current (P6 is correcting for case current asymmetry)

NSTX-U

Outline

- Overview of MAST-U and NSTX-U scenario and control collaboration
- Review of NSTX-U startup calculations
- Comparison between LRDFIT calculations and MAST results
- Predictive startup calculations for MAST-U

Unique aspects of the MAST-U breakdown scenarios

- Solenoid is shorter than NSTX-U
 - More curved fringe field that reduces the vertical extent of a null
 - May require larger V_{loop}
- Eight bi-polar can provide nulling field
 - Lots of free parameters in precharge, null and early ramp up
 - Use a unique power supply scheme
 - Separate IGBT H-bridges with small groups sharing DC links
 - May motivate having certain supplies rectifying while others are inverting

Example MAST-U breakdown scenario with I_{OH} at max current for first campaign

- Aim to keep D-coil current below 3 kA – Minimize heating and stress
- Use D1, D2, D3 like an extension of the solenoid
 - Steady positive current in preparation for diverting later in the ramp up
- Use D5, D6, D7 like PF3 on NSTX-U
 - Swing them fast from positive current toward zero
 - Swing DP from zero to negative current
- Use P4 and P5 to form a higher order null and provide confining field

Example of a higher-order null at t=0

Decent vacuum field configuration at 20 ms for a limited plasma with I_p ~ 150 kA

NSTX-U

Preliminary results: Present work is focusing on optimizing the field configuration in the early ramp up while satisfying the I and V constraints of the power supplies

NSTX-U

Startup development for MAST-U, Devon Battaglia, September 25, 2017

Planned collaborative activities on startup development for MAST-U

- Identify a target breakdown scenario for MAST-U
 - Achieves desired breakdown metrics
 - Optimizes early rampup for passive vertical and radial stability
 - Working with MAST-U team to understand power supply behavior near maximum voltage request
- Develop breakdown recipes for scanning parameters in the control room
 - Typically scan I_{OH} precharge, V_{loop} and null timing
 - How does the PF coil precharge impact the scenarios?
- Power supply testing (early 2018) will provide first opportunity to refine 2D wall and power supply models
- Support magnetics calibration and first plasma attempts in spring, 2018

Summary

- Summer visit enabled significant progress on MAST-U and NSTX-U collaboration on startup development
- Vacuum field calculation portion of the LRDFIT code is now running on CCFE
 - MAST-U team members using LRDFIT to guide startup plans, including magnetic calibrations and scenario development
 - Data I/O demonstrated with MAST data
 - Good agreement between LRDFIT calculations and data
- Demonstrated utility of LRDFIT for interpreting startup results and refining the 2D device description
- MAST-U startup scenario calculations are underway
 - Goal is to identify target scenarios for the first plasma attempts and develop recipe for scanning parameters

MAST-U D-coil Power Supply

Calculations match timing of breakdown and brief appearance of two rings

NSTX-U

-0.011 m

Startup development for MAST-U, Devon Battaglia, September 25, 2017

1.730 .**

3 7 39

Field null calculations capture qualitative differences in the breakdown region

Breakdown scenarios at 8 and 20 kA precharge were routinely used

- V_{loop} increased with larger precharge
- Discharge evolution very similar after first 20ms at either precharge
- There was an up-down asymmetry that is not captured in the model
 - Quantitative comparisons between model and experiment are ongoing

An example shot of low V_{loop} DI startup

MUN 08.371

Start-up on MAST and MAST-U without P3

USING CENTRAL SOLENOID

A Sykes, M Istenic

Presentation at MAST - U meeting, 22 Sept 08

Breakdown easy in 'DI' shots using constant low value of P3 to give null – pre-ionisation not necessary, for example Ohmic #17418 started at 0.9ms (before flashlamp at 3ms)

Similar to NSTX field configuration

A calculation including the M3 wall model (FIESTA)

