

Reaching high beta operation in MAST-U (Part I of II)

S.A. Sabbagh¹, C. Ham², A. Thornton², D. Ryan², V. Zamkovska¹, J. Riquezes¹, M. Tobin¹, G. Cunningham², S. Gibson², J. Harrison², C. Vincent², J.W. Berkery³, et al.

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY ²UKAEA, Culham, UK ³Princeton Plasma Physics Laboratory, Princeton, NJ

> Presented to the NSTX-U Physics Meeting (via Zoom) PPPL 5 February 2024

COLUMBIA UNIVERSITY

Supported by US DOE grant DE-SC0018623

MAST-U campaign thrust experiment MU03-THR-02 successful in producing sustained high β plasmas

Goals

- **Produce sustained high performance determined by objective figures of merit (** β , β_N , β_p , W_{tot} , τ_E)
- Produce full understanding of limiting stability physics using unparalleled MAST-U diagnostic set
- Make connection between operational space produced and that of ST Pilot Plant visions

Highlights

- □ High β_N plasmas created, initial experiments (MU02-THR-02) establishing high β_N > 3, eliminating IREs in during Ip ramp-up, mode locking at lower range of β_N , and establishing VDE limits
- Rotating MHD modes mitigated and mode locking completely avoided at elongation ~ 2.3
- Decrease in I_i observed with all else constant indicating n = 1 core dynamo / flux pumping (Part II)
- Shafranov shift stabilization with extreme shift of toroidal rotation peak mitigating mode locking

Part II of this presentation will address further results / physics details of the latest plasma run (about 1.5 weeks ago)

DECAF shows about 3200 plasma shots achieved during the first three MAST-U run campaigns

	MU01	MU02	MU03
Shot range	43313 -> 4 5513	46020 -> 47 174	47712 -> 49 475
Total shots	2201	1155	1764
Plasma shots	1362	665	1169

Plasma shots categorized by DECAF

Nearly all plots / analysis shown in this talk created with DECAF

The MAST-U MU03 run campaign completed at the end of January 2024

 Some results about 1.5 weeks old (reserved for Part II of this talk)

Plasma β has progressively increased in MAST-U

Plasma β (β_p, β_t, β_N) progressively increased in MU01
→ MU02 → MU03

 *IAEA FEC record β_N for MAST-U run in our 2nd year experiment MU02-MHD-02

> Transiently during programmed I_p reduction testing VDE limits

MU02-MHD-02 broadly examining the conditions for stability of key modes that create beta-limiting operational limits

Overall goal

Investigate key beta-limiting MHD to determine β_N and other limits, and curtail or eliminate such modes to reach maximum β_N , β_p , β

Approaches follow techniques used in NSTX

Very good progress, yet only 2 of 6 steps completed; VDE limits found

- IREs (leading to uncertain J profile) eliminated during Ip ramp, flat top
- "Tearing mode" not yet seen; long-lived mode (LLM) is dominant
- Some information for low, constant I_p target (step 4) from XP RT08 <u>DECAF analysis (physics & tech events)</u>

MU02-MHD-02 proceeding as planned – quite successful, with good understanding of the results attained so far with great diagnostics

More to do! Only reached Step 2 (of 6)

- 18 shots, BUT constraint of 50 ms steps of the NBI during I_p ramp-down development
- More approaches next 4 steps to affect MHD
- Burst Thomson shows flat T_e spots (islands)

Parameter variations as expected

- **1** The I_i and $\beta_p = 1.3$ are still increasing
- **2** The β_N saturating at ~ 3.3, W_{tot} decreasing
- The β_p is more than double the base scenario → higher I_{bootstrap}

Related proposals for MU03

Expand stability limit tests (more variations) shaping, higher NBI, MHD spectroscopy, etc

• Expand stability space, inform DECAF analysis

MAST-U

Disruptivity: MU02-MHD-02 continues to show that high β_N operation is basically disruption-free

□ Large number of equilibria created at high β_N , β_N / I_i ; haven't reached limit □ Disruptivity is very low at high β_N , consistent with NSTX, KSTAR, DIII-D

MAST-U

MU03-THR-03 High performance experiment has started operation at increased elongation, steps now being taken to optimize shape

MAST-U

β_N limit: As planned, MU02-MHD-02 expanded MAST-U operation in (I_i, β_N) space

MAST-U MU03-THR-02 High Performance Plasma campaign experiment: DECAF used as sole analysis tool to guide

MAST-U

10

MU03-THR-02 aims to logically combine elements to produce maximum performance in MAST-U with physics understanding

Goals

- **Produce sustained high performance determined by objective figures of merit (** β , β_N , β_p , W_{tot} , τ_E)
- Produce full understanding of limiting stability physics using unparalleled MAST-U diagnostic set
- Make connection between operational space produced and that of ST Pilot Plant visions

Strawman Approach (70 shots, run at different times in MU03 campaign)

- 1. EARLY STAGE: Complete and expand the MU02-MHD-02 plan to maximize β , β_N , β_p
 - techniques also aim to reduce / eliminate the LLM the remaining impediment to high performance
- 2. <u>MIDDLE STAGE</u>: Fully expand performance enhancement and operational space approaches
 - Expand boundary shape, q profile variation; piggyback aspects of experiments (e.g. controlled ramp-down)
 - Expand operational space to maximum $I_p \sim 1.0$ MA and W_{tot} , compare q, mode activity to lower I_p operation
 - Fully diagnose plasma, including use of MHD spectroscopy

3. LATE STAGE:

- Combine the most successful scenario development elements to produce maximum performance
- Fully determine the physics of performance limiting MHD, with connection to Pilot Plant relevant q, β_N , etc.

Long-lived mode with "clean" spectrogram produced in recent MU03 plasma with improved control considered for THR-02

MAST-U

MU03-THR-03 on 7-Dec produced controlled operation at higher elongation, a significant milestone in this experiment

Past MU03-THR-02 high elongation shots not controlled, high squareness, VDEs

 \square MU03-THR-02 (7-Dec) high κ scan shots mostly well controlled; almost no VDEs

MAST-U

Elongation 2.05 – 2.15 plasma had well-controlled equilibrium, li < 1, LLM that decreased in time with no LTM disruption

MAST-U

Recent MU03-THR-02 experiment accesses high β_N at increased elongation

increased elongation desirable for sustain plasma operation

decaf_wb-MASTU-MDL011124d1-3THR2-Vv0a

MAST-U MU03 shot 49220 is an excellent illustration of stability physics alterations by rotation and density profile changes

MAST-U M03-THR-02: Reaching high

MAST-U MU03 shot 49220 – toroidal rotation sustained avoiding mode lock

Density profiles are largely unaffected during faster rotation reduction periods

MAST-U MU03 shot 49220 – toroidal rotation increases rapidly after Large ELM, LLM stabilizes; plasma reheats to $\beta_N = 4$

R (m)

49220

Large ELM significantly alters density to a far more peaked profile

NBI has better core penetration

Broad rotation profile forms, plasma spins up during reheat

Reduced density gradient may help stabilize LLM

MAST-U

n = 1 component of LLM stabilized during high elongation

MU03-THR-02 recently affected LLM evolution – now positioned to optimize target and reach new highs in plasma beta

- Robust high elongation targets created starting 7-Dec-23
- \square B_T reduction successfully run in non-optimized target plasma
- Plasma shape optimization aimed to mitigate/stabilize LLM
 - High elongation period moved earlier
 - Outer strike point moved outward to reduce mode locking
 - Additional target plasma created with lower kappa, low R strike points 15-Jan-24

Next steps

- Choose two plasma targets for final optimizations to mitigate/stabilize LLM
 - Will include slight reduction in I_p , SS NBI timing alteration, etc.
- \Box Reduce B_T in optimized target plasma
- Conduct MHD spectroscopy measurement to assess RWM stability

Final choice of plasma targets for accessing / sustaining higher beta based on experimental experience to date

Mode characteristics

- There are two key rotating n = 1 MHD modes with associated n = 2 (sometimes n = 3)
- Lower frequency mode appears to be LLM, name the other the "inner" mode

□ Mode stability – several variations affect it

- Plasma shape: can apparently stabilize the inner mode (49313)
- Plasma rotation: saturate the mode if rotating quickly enough
- Plasma rotation shear: to avoid mode phase coupling
- Density profile: (ex: 49220 and similar shots with loss of density pedestal and reheat)
- □ <u>Key</u>: Plasma elongation / rotation both stabilizing, but can offset one another
- □ Initial SW with delayed SS NBI application generally superior for MHD stability
- □ Mode phase coupling must be avoided leads to certain mode lock and disruption
- □ Several PCS approaches used during MU03-THR-02. Use the most robust ones.

Further optimizations now possible with MU03-THR-02 high kappa, and low kappa high triangularity targets

u Sustained, but β_N rolls w/H-mode n_e profile **u** β_N reaches 3.2, not yet optimized

MAST-U

Recent MU03-THR-02 and other high β_N experiments show a dependence of β_N on I_p

□ Maximum β_N reached at reduced radiated power

□ Increase of elongation > 2.3 lead to increased P_{rad} → increase triangularity

 $\square \rightarrow \text{Reach sustained high } \beta_{\text{N}} \text{ at high elongation, sustained rotation, and low } P_{\text{rad}} \\ \text{decaf_wb-MASTU-MDL011124d1-3THR2-Vv0a}$

MAST-U

Recent MU03-THR-02 accessed high β_N at high elongation with suffering locked mode disruptions

 \Box High beta operation = 4 (I_p = 0.75 MA) exhibited locked modes / disruptions

□ MU03-THR-02 completely avoided mode locking at elongation ~ 2.3

decaf_wb-MASTU-MDL011124d1-3THR2-Vv0a

MAST-U

Recent MU03 shot at high elongation has positive characteristics for continued MU03-THR-02 shot evolution

MAST-U

MAST-U campaign thrust experiment MU03-THR-02 successful in producing sustained high β plasmas

Goals

- **Produce sustained high performance determined by objective figures of merit (** β , β_N , β_p , W_{tot} , τ_E)
- Produce full understanding of limiting stability physics using unparalleled MAST-U diagnostic set
- Make connection between operational space produced and that of ST Pilot Plant visions

Highlights

- □ High β_N plasmas created, initial experiments (MU02-THR-02) establishing high β_N > 3, eliminating IREs in during Ip ramp-up, mode locking at lower range of β_N , and establishing VDE limits
- Rotating MHD modes mitigated and mode locking completely avoided at elongation ~ 2.3
- Decrease in I_i observed with all else constant indicating n = 1 core dynamo / flux pumping (Part II)
- Shafranov shift stabilization with extreme shift of toroidal rotation peak mitigating mode locking

□ Part II of this presentation will address further results / physics details, including

- □ MU03-THR-02 sustained plasmas with MHD mode mitigation reaching high β_N , and making this work at $I_p = 0.75$ MA
- Comparisons to NSTX using DECAF (educational similarities and differences)