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Motivation and Main Results

• Motivation: fast waves in the lower hybrid frequency range (helicon) can provide
off-axis current drive needed for non-inductive, steady-state scenarios

• Goal: combine δTe fluctuation measurements with time-dependent integrated
modeling in order to assess wave absorption in helicon modulation experiments

– Necessary to validate models before using to design future scenarios

• Main results:
– Experimental evidence of core electron heating in L mode DIII-D discharges
– Integrated simulations support interpretation of observed δTe profiles
– GENRAY predictions are consistent with initial estimates of helicon absorption
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Mid-Radius Current Drive Is Needed for Reactor Scenarios

• Steady state scenarios require efficient,
non-inductive off-axis current drive1

• DIII-D has been studying methods for off-axis
radio frequency current drive

– Top launch ECCD (since 2019)
– Helicon current drive (2021)
– HFS lower hybrid current drive (2024)

• Whereas ECCD is localized near ω ≈ nωce,
helicon and lower hybrid current drive occur
due to Landau damping, when ω/k∥ ≈ v∥,e

– Off-axis absorption for sufficiently high βe

1S.C. Jardin et al. Fusion Eng. Des. 38, 27 (1997)
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Helicon Wave Can Provide Off-Axis Current Drive

• Helicon: fast wave in the lower hybrid range of
frequencies (fci ≪ f ≪ fce)

– DIII-D helicon antenna: 476 MHz, n∥ = 3

• Off-axis absorption can drive non-inductive current
necessary to help sustain advanced scenarios2

• MW-level helicon system has been commissioned on
DIII-D with 2 s pulse lengths, robust load resilience

• Initial goal: demonstrate helicon power absorption in
L mode and validate against integrated modeling

2R. Prater et al. Nucl. Fusion 54, 083024 (2014)

J.B. Lestz NSTX-U Science Meeting Apr 2024 3 / 21



Investigating Helicon Absorption With Power Modulation

Time

Input power T
e
 response

• Direct heating: modulated helicon power →
modulated δTe response at same frequency,
lagging by 90◦ (ideally)

– Transport effects distort this picture
when modulation is not sufficiently fast

However, faster modulation leads to
smaller amplitude fluctuations

• Use cross-spectral analysis techniques with
Fourier transforms to average over many cycles

• Compare to same analysis with modulated
ECH, assumed to be well-understood
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Helicon Modulation Is Not Visible in Raw ECE Trace

• GENRAY predicts core deposition with ≈ 50% first
pass absorption in L mode shot 195182

• Average of 350 kW power injected by helicon antenna
– Measured by probes, after any transmission losses

• Lack of obvious ECE modulation motivates use of
cross spectral analysis to boost signal to noise
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Ensemble Averaging Is Necessary to Quantify Coherence

• Let P(t) be the modulated input power (helicon or ECH) and Te(t) be the output

– Then P̂(f ) = F [P(t)] and T̂e(f ) = F [Te(t)] are their Fourier images

• Square coherence: γ2 =
|⟨T̂∗

e P̂⟩|2

⟨P̂∗P̂⟩⟨T̂∗
e T̂e⟩

≈ 1 only when ϕP(t) ≈ ϕTe(t)

– ⟨. . . ⟩ denotes ensemble averaging, by chopping the time series into ns segments

– Significance test: γ2 > 1 − α
1

ns−1 rejects the null hypothesis with uncertainty α

• Dividing into more segments improves statistics, but reduces frequency resolution
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Coherent δTe Response to Helicon on Core ECE Channels

• Both helicon and ECH shots
have square coherence
peaking at f0 = 43 Hz and
3f0 = 129 Hz

– Square wave modulation
has only odd harmonics

– Coherent peaks exceed
95% significance level

• Helicon coherence at f0
peaks in the core

– ECH resonance at ρ ≈ 0.2

• Statistical error bars result
from ensemble average
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Cross Phase Characterizes Heating vs Transport Response

• Measured Te response includes both heating
and transport effects

• Out of phase component results from heating

Im[δTe(f )] =
Im[⟨P̂∗T̂e⟩]

⟨P̂∗P̂⟩ P̂

• In phase component Re[δTe(f )] occurs due to
transport or direct diagnostic pickup

• Cross phase tanϕ(f ) = Im[δTe]
Re[δTe]

quantifies this
relationship (ϕ → −90◦ for zero transport)

Time

Input power T
e
 response

Out of phase

(heating)

In phase

(transport)

Real

Im
a
g

InputTransport

Heating

Output

Cross

Phase
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Measured δTe Profiles Show Core Heating

• Cross phase is near ideal
-90◦ for nearly all channels

– ECH is more coherent, but
also has more transport

Cross phase deviates
from −90◦ near peak
deposition

• Out of phase δTe peaks in
core, agreeing with ray
tracing predictions
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Electron Transport Effects Complicate
Extracting Absorbed Power From δTe Measurements

• Electron energy conservation relates source profile Ŝ(f , ρ) to T̂e(f , ρ) via transport

−D∇2T̂e(f , ρ) + V∇T̂e(f , ρ) +

(
1
τ
+ i

3
2
ω

)
T̂e(f , ρ) =

Ŝ(f , ρ)
ne

• Diffusion and convection can smear out the fluctuations and alter the cross phase

• Rigorous approach: fit multiple
harmonics of T̂e data to determine
values of transport coefficients3

– Present helicon data does not
have high enough signal to
noise to fit multiple harmonics

3C.C. Petty et al. 23rd RFPPC, Hefei, China (2019)
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Zero Transport Approximation Yields an
Oversimplified Estimation of Power Deposition

• If modulation is much faster than transport, can assume direct heating response

• Then summing over all frequencies in a square wave of height Smax gives the
total absorption as a function of δTe measured only at the modulation frequency f0

Pabs =

∫
Smax(ρ)dV ≈ 3π

4
ω0

∫
ne(ρ)Im[T̂e(f0, ρ)]dV

• ECH modulation experiments indicate f0 = 43 Hz
is not within this zero transport regime4

• Compromise: adjust this approximation via
calibrated ECH measurements and modeling

4C.C. Petty et al. 61st APS DPP, Fort Lauderdale, FL (2019)
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ECH Experiments Used to Adjust
for Transport in Helicon Experiments

• Significant shortfall exists when
calculating Pabs from δTe data without
transport for ECH modulation shot

• Leap of faith: assume the ECH transport
correction is the same for helicon

– Note: ECH deposition is much more
narrow than helicon, localized at ρ ≈ 0.2

– Crude approximation, not a precise
accounting of transport effects

PHK
abs ≈ PHK

meas(ECE)
PECH

abs (TORAY)

PECH
meas(ECE)

ECH
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Preliminary Estimate of Transport Adjusted
Helicon Absorption Consistent With GENRAY Prediction

• Transport correction factor calculated from ECH modulation

• GENRAY predicts 30 - 50 kW of power near the axis, where ECE does not cover

Helicon
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Time-Dependent Integrated Modeling With TRANSP

• TRANSP loops over a ray tracing code and transport model at each time step in
order to predict the helicon deposition and δTe response over time

• Comparing predicted δTe to ECE measurements aids experimental interpretation

Ray Tracing Code
(GENRAY, TORAY)

Transport Model
(TGLF, MMM, etc)

Equilibrium + profiles

Power deposition

+ current driveMagnetic equilibrium
1D plasma profiles

Heating/CD parameters

Fluxes + sourcesTe prediction

TRANSP
time-dependent inputs
time evolves Te profile
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Helicon Absorption is Sensitive
to Errors in Te Profile Evolution

• Anomalous transport model evolves Te in time, not just δTe

• Due to sensitivity of helicon absorption in weak damping regime (L mode),
reasonable uncertainty in Te profile prediction strongly modifies deposition

– This is also true for uncertainties in experimental profile reconstructions
– Hotter target plasmas with stronger absorption may ameliorate this issue
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Helicon ECE Measurements Agree With
Core Deposition Predicted by Simulations

• Simulations have more peaked deposition than ECE measurements
– Predicted δTe magnitude is less reliable due to sensitivity to predicted Te profile

• Coherence is much higher in TRANSP, but has similar peaked profile

• Good agreement between flat cross phase profile in simulations and experiment
Helicon
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Alternative Approach to Inferring Power Absorption:
Use TRANSP to Solve the Inverse Problem

• Question: what power deposition profile would correspond to the measured δT̂e?
• Use an artificial array of ECH gyrotrons to create basis functions

– Avoids sensitivity of helicon deposition on Te profile predicted by TRANSP

• Linear regression to find weights of each gyrotron to reproduce observed δT̂e
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Regression Fit to Data Significantly
Less Peaked Than GENRAY Prediction

• Fit to data is the direct fit to the ECE data
– 100 kW of total heating is consistent with purely empirical estimate of 111 ± 24 kW

• GENRAY fit to data uses the predicted power deposition, scaled to fit δT̂e

– More strongly peaked δT̂e near the axis, very similar to the best fit elsewhere
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Consistent Core Deposition When Scanning Equilibrium Te

• Equilibrium Te scanned by
varying ECH power

• GENRAY predicts core
absorption in each case

• Coherence is near or above
95% significance level, cross
phase near −90◦, and δT̂e is
core-localized

– Note: different coupled
helicon power in each shot
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Inferred Power Absorption Scales
With Predicted First Pass Absorption

• Surprisingly good agreement in some cases
between GENRAY first pass absorption and
observed heating

– More reliable: trend in absorption across shots

• Error bars are likely understated
– Only partially quantified substantial uncertainty in

transport adjustment

• Future experiments with full first pass absorption will
distinguish between prompt vs multi-pass losses
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Summary and Future Work

• Helicon modulation experiments in L mode DIII-D plasmas were investigated with
cross spectral analysis and time-dependent integrated simulations

Summary
• Core electron heating observed in DIII-D L mode experiments
• Time-dependent integrated modeling in qualitative agreement with measurements
• Preliminary estimate of helicon absorption is consistent with GENRAY prediction

Future Work
• Reduce modeling error in Te profile evolution to improve δTe reliability for helicon
• Upcoming experiments will more precisely quantify absorption and current drive
• Once validated, use time-dependent integrated modeling to explore the role of

helicon current drive in advanced scenarios

Work supported by US DOE under DE-FC02-04ER54698
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Helicon and ECH Modulation Experiments
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Two Quantities for Estimating δTe Response

• Defining the transfer function Ĥ via T̂e(f ) = Ĥ(f )P̂(f ) ⇒ Ĥ = ⟨P̂∗T̂e⟩/⟨P̂∗P̂⟩,

1. Coherent output spectrum: δT 2
e (f ) = |Ĥ|2⟨P̂∗P̂⟩ = |⟨P̂∗T̂e⟩|2

⟨P̂∗P̂⟩

– Weighting by coherence is built in (equivalently, |Ĥ|2⟨P̂∗P̂⟩ = γ2⟨T̂∗
e T̂e⟩)

– Complementary quantity: incoherent spectrum: (1 − γ2)⟨T̂∗
e T̂e⟩

– Drawback: no information on phase between P̂ and T̂e

2. Out of phase response: δTe(f ) = Im[Ĥ]|P̂| = Im[⟨P̂∗T̂e⟩]
⟨P̂∗P̂⟩ P̂

– Cross phase: tanϕ(f ) = Im[δTe]
Re[δTe]

characterizes heating vs transport response
– Does not include coherence directly, very noisy away from modulation frequency
– Drawback: overstates ∆f resolution due to interpolating Ĥ(f ) onto grid of P̂(f )

• Relative error formulas exist for both quantities5 (errorbars in plots)

5J.S. Bendat et al. Journal of Sound and Vibration 59, 405 (1978)
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Coherent Output Spectrum Distinguishes
Coherent vs Incoherent Fluctuations

• Coherent spectrum: δT 2
e (f ) =

|⟨P̂∗T̂e⟩|2
⟨P̂∗P̂⟩ = γ2⟨T̂ ∗

e T̂e⟩
– Weighting by coherence is naturally built-in
– Incoherent spectrum: (1 − γ2)⟨T̂∗

e T̂e⟩
– No information on phase between P̂ and T̂e

• Both ECH and helicon shots show clear peaks in
coherent spectrum at f0 and 3f0

• 50 Hz peak in helicon data is due to NBI modulation
– Differentiated from the response to the helicon

modulation via this decomposition
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Visible Te Modulation Influenced by NBI

• Beam modulation used to reduce NBI power, avoid transition into H mode

• Unfortunately, 50 Hz NBI modulation quite close to 43 Hz helicon modulation
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Direct Pickup Has Different Signature From Heating

• ECE channel 28 is polluted
when helicon operates

• Signatures of direct pickup:
– Rapid rise of Te response
– Very high coherence
– Wrong cross phase

Signal is in phase

• Other ECE channels do not
have these dramatic features

– Helps to rule out pickup

Helicon
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Zero Transport Limit May
Provide Lower Bound on Absorption

• Electron energy conservation equation in most basic form may be written∫
∂

∂t

(
3
2

neTe

)
d3x︸ ︷︷ ︸

direct heating

+

∫
∇ · Q d3x︸ ︷︷ ︸
transport

=

∫
S d3x︸ ︷︷ ︸

source

= Pabs

• Here, Q = −neD∇Te + neVTe is the heat flux. Rewriting the transport term yields∫
∂

∂t

(
3
2

neTe

)
d3x +

∮
Q · dA =

∫
S d3x = Pabs

• So long as heat is not flowing in from the boundary, neglecting transport
necessarily represents a lower bound on the true absorption
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Consistent Response to Modulated ECH
in ECE Data and TRANSP Predictions

• Coherent δTe response visible in time trace in ECE data and TRANSP simulations

• Experimental coherence falls into noise at higher frequency harmonics

• Calculated δTe is within statistical errorbars for measurements and simulations
ECH
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Spatial Fluctuation Profiles in Reasonable
Agreement With Simulations for Modulated ECH

• 1D TRANSP simulations are mirrored to compare to measurements
– Radial ECE array spans HFS (ρ < 0) and LFS (ρ > 0)

• TRANSP + TORAY/MMM predict similar δTe width, though less prominent peaks

• Measured fluctuations are much more hollow near the axis than in TRANSP
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Modulated Helicon Response Buried in ECE Trace,
Has Coherent Features Consistent With TRANSP Predictions

• ≈ 10 eV δTe response not clear in ECE time series
– Visible modulation is actually at 50 Hz, due to NBI blips (rigorously distinguished)

• Even in TRANSP, helicon coherence is weaker than for ECH modulation

• Coherent δTe has similar frequency dependence at a given location
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Averaging Coherence Across Many
ECE Channels Improves Statistical Power

• Single ECE channel often
only shows clear peaks in
coherence at f0 and 3f0

• Combining multiple channels
averages out noise

– Average over |ρ| < 0.25

• 95% significance level shown
for a single channel

– Work in progress:
rigorously calculating this
for combining channels
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