

Supported by

Office of **FNERGY** Science

NSTX Upgrade for Establishing Physics and Technology Basis for FNSF Culham Sci Ctr

🛈 NSTX-U

M. Ono TOFE 2014

- Introduction and Motivation for NSTX-U
- NSTX Upgrade Project
- NSTX-U ST-FNSF Targeted Experiments
- Summary

NSTX-U is nearing its first plasma New center-stack and 2nd NBI are major upgrade scopes

NSTX Upgrade Mission Elements

- Advance ST as candidate for **Fusion Nuclear Science Facility** (FNSF)
- **Develop solutions for the plasma**material interface challenge
- **Explore unique ST parameter** regimes to advance predictive capability - for ITER and beyond
- **Develop ST as fusion energy** system

Liquid Lithium "Snowflake"

Substantial Increase in NSTX-U Device / Plasma Performance ~ X 2 B_T , I_p and P_{NBI} and ~ x 5 pulse length from NSTX

efficiency for sustained 100% non-inductive operations needed for FNSF

() NSTX-U

Present NBI

New 2nd NBI

5

 $W_n \sim 1-2 MW/m^2$ with $R \sim 1 m$ ST-FNSF feasible!

6

There have been several studies of ST-FNSF showing the potential attractiveness of this approach

Projected to access high neutron wall loading at modest R_0 , P_{fusion} $W_n \sim 1-2 MW/m^2$, $P_{fus} \sim 50-200MW$, $R_0 \sim 0.8-1.8m$ Modular, simplified maintenance Tritium breeding ratio (TBR) near 1 Requires sufficiently large R_0 , careful design

NSTX-U to address ST-FNSF R&D needs

- Non-inductive start-up, ramp-up, sustainment
- ✓ Confinement scaling (especially electrons)
- ✓ Stability and steady-state control
- Divertor solutions for (ss) high heat flux Radiation-tolerant magnets, design

Example ST-FNSF concepts

UT Austin

ST-FNSF by T.G. Brown and J. Menard at this conference

Talk Outline

- Introduction and Motivation for NSTX-U
- NSTX Upgrade Project
- NSTX-U ST-FNSF Targeted Experiments
- Summary

NSTX Upgrade Project Progress Overview

R. Strykowsky, E. Perry, T. Stevenson, L. Dudek, S. Langish, T. Egebo, M. Williams and the NSTXU Project Team

Center stack

New Center Stack Project Scope

- Inner TF bundle
- **TF Flex bus**
- OH coil
- Inner PF coils
- Enhance outer TF supports
- Enhance PF supports
- Reinforce umbrella structure > Structure
- New umbrella lids
- Power systems
- I&C, Services, Coil protection

NSTX-U Analyses - P. H. Titus at this conference

2nd NBI Project Scope

- Decontaminate TFTR beamline
- Refurbish for reuse
- Relocate pump duct, 22 racks and numerous diagnostics to make room in the NSTX Test Cell
- Install new port on vacuum vessel to accommodate NB2
- Move NB2 to the NSTX Test Cell
- Install power, water, cryo and controls

Ancillary Sys

Innovations and Challenges in Manufacturing New Center-Stack

- **TF Flex-bus** EDM cuts from solid copper chromium zirconium block
- Friction stir welding enabled joining of two different copper alloys without annealing in TF lead area.
- Copper cooling tubes were soldered into the TF conductor assemblies using solder paste with non-ionic "R" flux (instead of Zn-CI-based flux).
- Vacuum Pressure Impregnation performed with CTD-425 (Cyanate Ester / Epoxy Blend Resin. (highly exothermic).
- Water soluble "Aquapour" was applied to provide 0.1" gap between TF and OH coils.

Radially very thin Rogowski and magnetic sensors.

Assembly of Inner TF Quadrants

(9) individual conductors into each Quadrant mold

Quadrant manufacturing technique was used to maintain precision for the long length and relative ease of assembly

M. Ono TOFE 2014

11

Assembled TF mold ready for Vacuum Pressure Impregnation with CTD-425 resin

This is first of six VPI operation conducted on NSTX-U. Care must be taken due to the highly exothermic nature of the Cyanate Ester / Epoxy Blend Resin. Raised temperature very slowly ~ 2 days.

Completion of First TF Quadrant NSTX-U PPPL Magnet Fabrication Team

Much thanks to Jim Chrzanowski for 40 years of pioneering fusion magnet manufacturing

The quadrants assembled with S-2 glass tape between layers & pre-insulated G-10 core

Full TF Bundle in oven after successful VPI

A movie of OH coil winding at PPPL

Center-stack Components Fabricated Center-stack assembly complete

Vacuum Pressure Impregnation of OH Complete CS casing installed over the TF/OH coil bundle

New Center-Stack Installed In NSTX-U (October 24, 2014)

First plasma scheduled in Mar. 2015 and research operation in May 2015.

Relocation of the 2nd NBI beam line box from the TFTR test cell into the NSTX-U Test Cell Complete.

TFTR NBI beam box / components successfully tritium decontaminated.

Beam Box being lifted over NSTX

Beam Box placed in its final location and aligned

Beam Box being populated with components

Highly Tangential 2nd NBI Enabled by JK-Cap Outer Wall Radius Moved Outward to Avoid Beam Clipping

Interior View of Bay J-K

NSTX Upgrade Project Is Nearly Complete Recent aerial view of NSTX-U Test Cell (Oct. 27, 2014)

Talk Outline

- Introduction and Motivation for NSTX-U
- NSTX Upgrade Project
- NSTX-U ST-FNSF Targeted Experiments
- Summary

NSTX-U Addressing Critical Issues for FNSF Solenoid-free high beta operation

ST-FNSF Scenarios to be tested in NSTX-U

Compact ST-FNSF has no/small central solenoid

Helicity Injection Is an Efficient Method for Current Initiation FNSF needs ~ 1-2 MA of start-up current

CHI projects to achieve ~0.4 MA of start-up current in NSTX-U

Current Ramp-Up with HHFW for FNSF Up to Ip level sufficient for NBI heating and CD

NSTX has accessed A, β_N , κ needed for ST-based FNSF Requires $f_{BS} \ge 50\%$ for plasma sustainment

 $f_{BS} = I_{BS} / I_p = C_{BS} \beta_p / A^{0.5} = (C_{BS}/20) A^{0.5} q^* \beta_N \propto A^{-0.5} (1+\kappa^2) \beta_N^2 / \beta_T$

- NSTX achieved $f_{BS} \sim 50\%$ and $f_{NI} \sim 65-70\%$ with beams.
- NSTX-U expects to achieve f_{NI}~100% with the more tangential (~ x1.5- 2 more current drive efficient) NBI.

27

Divertor flux expansion of ~ 50 achieved with Snow Flake Divertor with large heat flux reduction in NSTX

NSTX-U will investigate novel divertor heat flux mitigation concepts needed for FNSF and Demo.

- Up-and-down symmetric Snow Flake / x-Divertors
- Lithium + high-z metal PFCs

Summary of NSTX-U

- NSTX-U's main mission is to establish basis for FNSF while providing data for ITER operation and PMI solutions.
- Unique ST features include high beta and compact geometry which would be suitable for compact FNSFs.
- ST-FNSF can be compact, low tritium consumption, and lower cost, satisfying the FSNF criteria of Abdou report.
- With new center-stack and 2nd tangential NBI, NSTX-U plans to demonstrate 100% non-inductive operation at high beta needed for FSNF.
- The new center-stack was completed and installed in NSTX-U. The pump down is planned this month.
- 2nd NBI is nearly complete and the commissioning is planned in Jan. 2015.
- NSTX-U plan to have the first plasma in Mar. 2015 and commence research operation in May 2015.

ST is a low aspect ratio tokamak with A < 2 Natural elongation makes its spherical appearance

Aspect Ratio A = R/a | Elongation $\kappa = b/a$ | "natural" = "without active shaping"

Camera image from START

A. Sykes, et al., Nucl. Fusion (1999).

Note: ST differs from FRC, spheromak due to B_{TF}

Y-K.M. Peng, D.J. Strickler, NF (1986)

ST can be compact, high beta, and high confinement Higher elongation κ and low A lead to higher I_p , β_T and τ_E

Aspect Ratio A = R/a Elongation $\kappa = b/a$ Toroidal Beta $\beta_T = \langle p \rangle / (B_{T0}^2 / 2\mu_0)$

• ST has high Ip due to high *k* and low A

$$I_p \sim I_{TF} (1 + \kappa^2) / (2 A^2 q^*)$$

S. Jardin et al., FS&T (2003)

Ip increases tokamak performance

$$\tau_E \propto I_p$$

$$\beta_T \equiv \beta_N I_p / (aB_{T0})$$

• ST can achieve high performance cost effectively

$$I_p \sim I_{TF}$$
 for ST due to low A and high κ

High κ ~ 3.0 equilibrium in NSTX.

Fusion needs FNSF(s) (modest cost, low T, and reliable) to Test and Qualify Fusion Components

Fusion needs to develop reliable/qualified components which are unique to fusion:

- Divertor/PFC
- Blanket and Integral First Wall
- Tritium Fuel Cycle
- Remote Maintenance Components
- Advanced Power Generation

- Without R&D, fusion components could fail prematurely which often requires long repair/down time. This would cripple the DEMO operation.
- FNSF can help develop reliable fusion components.
- Such FNSF facilities must be modest cost, low T, and reliable.

If the cost of volume neutron source (FNSF) facility is "modest" << ITER, DEMO, it becomes highly attractive development step in fusion energy research. M.A. Abdou, et al., FTS (1996)

33

Inner TF Bundle Comparisons- Physical

Description	Present Design	Upgrade Design	
Operating Current	1013 volts	1013 volts	
Number of Turns	36	36	
Number of Layers	Double	Single	
Cooling	water	water	
Maximum T/T Voltage stress	970 volts	28 volts	
Maximum T/T voltage/mil	14.9 volts/ mil	0.432 volts /mil	
Maximum volt/mil across leads	14.9 volts/mil	9.65 volts/mil	
Turn to Turn Insulation thickness	0.0648 inch	0.0648 inch	
Groundwrap insulation thickness	0.054 inch	0.222 inch	
Insulation Scheme	B-stage (Pre-preg)	Vacuum Pressure Impregnation	
Outside Diameter	7.866 inch	15.572 inch	
Cooling Hole Inside Diameter	0.186 inch	0.305 inch	
TF Conductor material	C10700	C10700	
•TF Bundle Failure Review 9/7/2011			

•Current TF Bundle 7.9 inch diameter

[•]Upgraded TF Bundle 15.7 inch diameter

TF Bundle Comparisons- Materials

Material	Existing TF Bundle	Upgraded TF Bundle
Copper Conductor	C10700 (OFHC w/ Silver)	C10700 (OFHC w/Silver)
Primer	DZ-80 (Ciba-Geigy)	CTD-450 (Cyanate-Ester primer)
Insulation Scheme	CTD-112P B-stage tape B-stage did not have ample resin to fill all voids between conductor corners	VPI w/CTD-425 Cyanate Ester Hybrid Provides good resin fill minimizing/eliminating void areas between conductor corners
Solder	95%-5% Tin-Antimony	95%-5% Tin-Antimony
Cooling tube	ACR (0.032 inch wall)	Type K (0.035 inch wall)
Flux	"NOKORODE" Paste flux (Contains Chlorides that may of contributed to insulation failure)	Rosin Flux (Does not contain Chlorides- organic material)

•TF Bundle Failure Review 9/7/2011

Improved Center-Stack Design to Handle Increased Forces Identical 36 TF Bars and Innovative Flex-Bus Design

Upgrade Design- Insulation Scheme

36 TF Bars manufactured by Major Tools With innovative friction stir weld joints

Friction stir welding enabled joining of two different copper alloys without annealing!

TF Conductor Friction Stir Welding

High strength coil leads, Copper-Chromium-Zirconium (CDA18150) were added to each end of the oxygen free silver-bearing copper conductors (CDA10700) by a process known as friction stir welding (FSW). This work was completed by Edison Welding Institute (EWI) in Columbus, Ohio

Copper cooling tubes were soldered into the TF conductor assemblies using solder paste with non-ionic "R" flux

Contaminant from the flux containing Zn and Cl caused gradual insulation deterioration which led to the TF coil failure in NSTX

Applying S-2 Glass TF Turn Insulation

Limited Center Stack Space Requires Compact Designs for Magnetic Sensors

Maximize "gain" – wire turns x area – by flattening cross sections

Rogowski coil for measuring plasma currents wound around thin teflon mandrel

- 30 turns of AWG 30 wire per cm
- Thickness kept at ~2.5 mm over ~11 m length

Coil dimensions: 3.8 x 2.3 x 0.5 cm

Magnetic pickup coils fit in pockets in graphite plasma-facing components

- AWG 26 copper wire around MACOR mandrel and coated with high temperature adhesive
 - Capable for use up to 800°C

New Digital Coil Protection System (DCPS) Provides Comprehensive Coil Protection

Formulating Strategy Toward Full NSTX-U Parameters

After CD-4, the plasma operation could enter quickly into new regimes

	NSTX (Max.)	Year 1 NSTX-U Operations (2015)	Year 2 NSTX-U Operations (2016)	Year 3 NSTX-U Operations (2017)	Ultimate Goal
I _Р [МА]	1.2	~1.6	2.0	2.0	2.0
Β _τ [T]	0.55	~0.8	1.0	1.0	1.0
Allowed TF I ² t [MA ² s]	7.3	80	120	160	160
I_P Flat-Top at max. allowed I ² t, I _P , and B _T [s]	~0.4	~3.5	~3	5	5

- 1st year goal: operating points with forces up to ½ the way between NSTX and NSTX-U, ½ the design-point heating of any coil
 - Will permit up to ~5 second operation at B_T ~0.65
- 2nd year goal: Full field and current, but still limiting the coil heating
 - Will revisit year 2 parameters once year 1 data has been accumulated
- 3rd year goal: Full capability

Schematics of OH-TF bundle configuration

100 mill gap between OH and TF to provide free OH-TF operation

45

Support Structural and VV Enhancements Complete Must handle 4 x higher electromagnetic loads

Final 2nd NBI Component being Installed 2nd NBI duct with pumping section and NBI armor installed

2nd NBI Commissioning planned in Jan. 2015

HHFW System for Electron Heating and Current Ramp-up Improved Antennas were installed on NSTX-U

 Prototype compliant feeds tested to 46 kV in the RF test-stand. Benefit of backplate grounding for arc prevention found.

Antennas were re-installed with the new compliant feeds and back-plate grounding

4 MW is available for HHFW heating and current ramp-up

OH Winding Station

Taping Machine

OH primed Conductor

On-line Brazing: 32 in line induction brazes were performed during the OH winding operations

Each braze joint was mechanically loaded (stretched) and helium leak tested to ensure a quality braze joint.

Inconel Center-Stack Casing Fabrication

100% non-inductive operating points projected for a range of toroidal fields, densities, and confinement levels

Projected Non-Inductive Current Levels for κ ~2.85, A~1.75, f_{GW}=0.7

B _T [T]	P _{inj} [MW]	I _P [MA]
0.75	6.8	0.6-0.8
0.75	8.4	0.7-0.85
1.0	10.2	0.8-1.2
1.0	12.6	0.9-1.3
1.0	15.6	1.0-1.5

From GTS (ITG) and GTC-Neo (neoclassical):

 $\chi_{i,ITG}/\chi_{i,Neo} \sim 10^{-2}$ Assumption of neoclassical ion thermal transport should be valid

S. Gerhardt, et al., Nucl. Fusion 52 (2012) 083020

