Enhancements To Full-Wave TORIC for HHFW Modeling

P. Bonoli, PSFC, Cambridge, MAM. Brambilla, IPP, Garching, GermanyC.K. Phillips, PPPL, Princeton, NJ

NSTX Research Forum HHFW / EBW Planning Session September 11-13, 2002

Applicability of TORIC to HHFW Regime

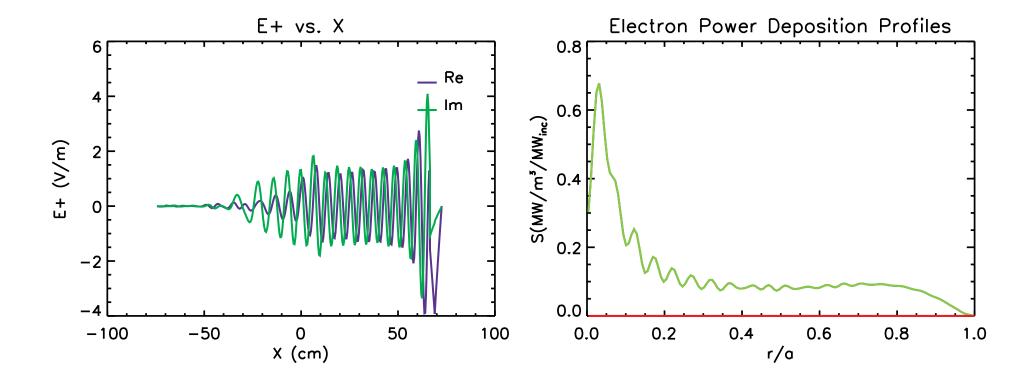
- TORIC uses SCK wave equation
 - Valid for $(k_{\perp}\rho_i)^2 < 1$
- But in NSTX we can have $(k_{\perp}\rho_i)^2 \approx 50$ - $k_{\perp} \approx \omega / V_A$, $T_i = 0.5 \text{ keV}$, $n_e = 4 \times 10^{19} \text{ m}^{-3}$, $B_t = 0.25 \text{ T}$
- Using the ion FLR wave equation in this regime gets wrong wave polarization and subsequently the wrong wave damping
 - ELD $\alpha |E_z|^2$
 - TTMP $\alpha |E_v|^2$
 - Cross term $\alpha E_y \cdot E_z$

TORIC Modifications for HHFW Regime

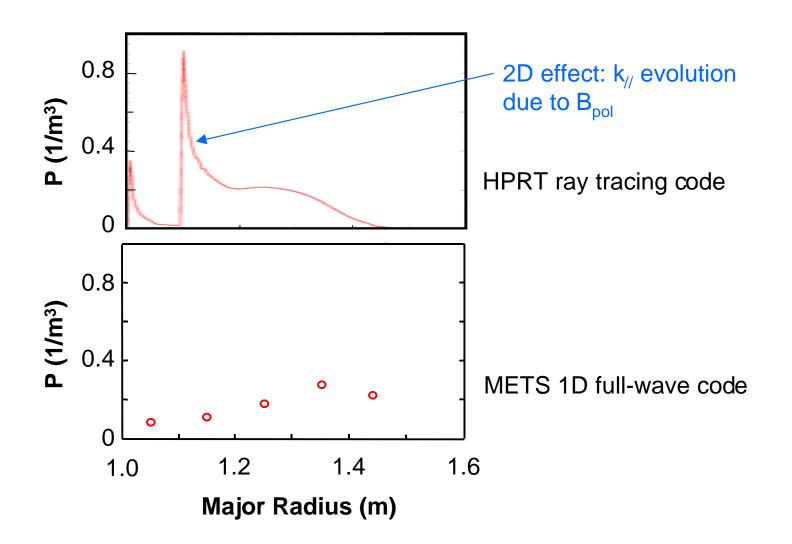
- Reformulated dielectric tensor elements in coefficients of SCK equations using full Bessel function expansion [Brambilla, 2002]:
 - Approach used by Belgian group in the SPRUCE code
 - Can then evaluate cyclotron damping on minority hydrogen, following Ono [Physics of Plasmas 2, 4075 (1995)]

Applicability of TORIC to HHFW Regime -Tests Performed

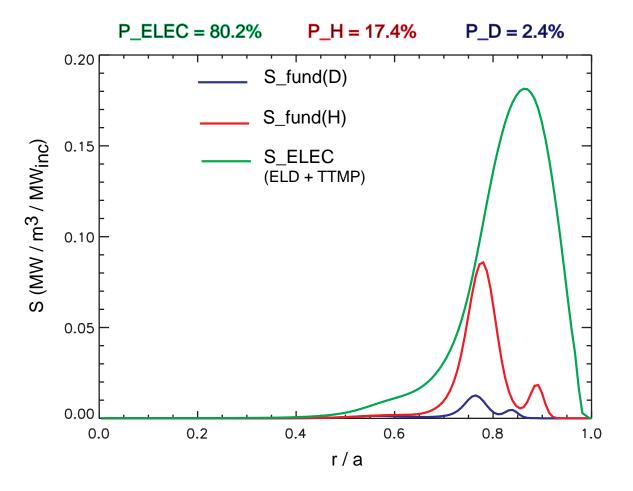
- Compare the following:
 - TORIC with ion FLR wave equation
 - METS 1D with full ion Bessel expansion (Phillips)
 - Ray tracing with full ion Bessel expansion (Rosenberg)
 - TORIC with modified full-wave equation


Parameters for Comparison of Models

- $T_i(0) = 0.5 \text{ keV}$
- $T_e(0) = 1.5 \text{ keV}$
- $n_e(0) = 4.1 \times 10^{19} \,\mathrm{m}^{-3}$
- $B_t = 0.32 T$
- $I_p = 800 \text{ kA}$
- Profiles:
 - $n_e \alpha [1 (r/a)^4]$
 - $T_{e} \alpha [1 (r/a)^{4}]$
 - $T_i \alpha [1 (r/a)^2]$


- $f_0 = 30 \text{ MHz}$
- $n_{\phi} = 22$
- $k_{||(ANT)} \approx 14 \text{ m}^{-1}$

•Plasma Composition 90% Deuterium 10% Hydrogen


TORIC Results with ion FLR Wave Equation

Results in substantial disagreement with 1-D integral wave code METS and toroidal ray tracing (HPRT) Models predict off-axis wave absorption on electrons

TORIC Results with Modified Wave Equation

Similar results for electron damping obtained with ORA in TORIC, but algorithm uses $B_{\theta} = 0$

Planned Work for FY2003

- Implement TORIC with modified wave equation within the TRANSP - FPPRF module [collaboration with D. McCune, M. Brambilla, and F. Meo]:
 - Can then perform routine transport analysis of NSTX discharges using HHFW heating.
- Immediately begin HHFW current drive studies using the modified full-wave module:
 - Code already coupled to Ehst Karney efficiency parameterization.