

NSTX Research Forum September 13, 2002

Gary Taylor

HHFW/EBW Breakout Summary

)

 $= \bigcup_{NSTX} NSTX =$

Goals for the Breakout Discussion

- = () NSTX
- Identify key physics issues that need to be addressed in 2003
- Review status of existing XPs and RF modeling
- Identify XMP's needed before the start of experimental campaign
- Determine specific XP topics & possible collaborations with other machines
- Assign primary XP authors and estimate run days needed for XPs
- other issues Prioritize XPs in light of NSTX baseline milestones and

Priorities for 2003 Run Guided by NSTX Milestones

() NSTX

- sustain plasma pulse lengths up to 1 s ot non-inductive techniques to assist startup and to Measure and analyze effectiveness of a combination
- Characterize EBW mode-converted emissions to drive estimate requirements for EBW heating and current

Breakout Presentations Divided into Four Topics

HHFW Heating & Current Drive

= ()) NSTX =

- LeBlanc
- Swain
- Bonoli
- Ryan
- Mau
- **HHFW-Ion Interactions**
- Rosenberg
- Zweben
- **HHFW Reliability & Performance**
- Swain
- **EBW Physics**
- Taylor
- Discussion of Run Plan & XP Priorities

HHFW Current Drive

()) NSTX

- Measure current profile, if MSE is operational
- Increase pulse length to ~ 1 s:
- run at higher RF power to conserve volt-seconds
- improve plasma position control to maintain matching
- avoid MHD by trying different I_p ramps & RF turn-on times
- Study effect of wave phase on heating efficiency
- $> 5 \times 10^{19} \text{m}^{-3}$ to achieve higher β , and maybe off-axis CD Previously ran low n_e and β to enhance CD, in 2003 run at
- HHFW/EBW Breakout Summary

HHFW Electron Heating

()) NSTX

- Limited Success in 2002:
- did not reproduce $T_e > 3$ keV from 2001
- limited by HHFW power (≤ 3 MW)
- Study HHFW heating in single and double null:
- gap scan
- Go to higher densities
- Vary phasing

HHFW & NBI Fast Ion Interaction

- \bigcirc NSTX =
- Wait for scintillator fast lost ion probe, if possible (Feb '03)
- Detailed NPA scan (1 run day)
- Scans at $I_p > 1$ MA (1 run day)
- Take advantage of higher HHFW power in 2003, if available
- Determine method to estimate power in tail
- Currently interfacing HPRT ray tracer to METS full wave code:
- allows better absorption profile comparison between 2-D ray tracer and 1-D full wave code

- Look for power threshold & document T_i
- - Try lower TF, so far tried 3.5 kG & 4 kG

NSTX

HHFW Driven H-Mode

- Try to obtain H-Mode at $I_p \sim 800$ kA
- so far observed at 400kA & 500kA

Enhancements to Full-Wave TORIC Code for HHFW in FY03 () NSTX

- $k_{\perp}\rho_i < 1$, but NSTX has $k_{\perp}\rho_i \sim 10$: Version of TORIC presently in TRANSP only valid for
- need to reformulate dielectric tensor elements in TORIC using full Bessel function expansion
- Implement TORIC with modified wave equation within TRANSP:
- routine transport analysis of NSTX
 HHFW-heated discharges
- Begin HHFW CD studies with modified full-wave module

Plans for CURRAY HHFW CD Modeling in FY03

- $= \bigcap_{NSTX} NSTX =$
- Analyze HHFW current drive discharges from 2002
- Complete coupling of CURRAY to TRANSP
- Benchmark CD calculations to CQL3D:
- is quasilinear effect important for HHFW electron damping in NSTX?
- is the wave damping and current drive modified by DC electric field and, if so, in what regimes?

EBW Emission Experiments & Modeling in 2003

- Demonstrate > 80% B-X and/or B-X-O conversion: (||) NSTX
- prerequisite for EBW heating and CD on NSTX
- Currently installing two B-X antennas with movable local limiters, local gas feed and O-mode reflectometry
- wedge for B-X-O study Hope to modify existing ORNL reflectometer antenna with BN
- Early in 2003 campaign, EBW emission measurements will piggyback, but some dedicated run time required:
- B-X conversion emission study (2 days)
- outer gap scan for B-X-O emission study (0.5 days)
- Complete GENRAY/CQL3D heating & CD scoping study

	5.5 Days of HHFW XMP: in 2003 Camp	s Needed E	arly
Operationa			A I CM
Priority	Title	Author	Run Days
1	RF Noise Generation	Swain & Wilson	1
2	Raise RF Power to 6 MW	Wilson	ω
ω	Antenna Conditioning Between Shots	Hosea	0.5
4	Startuo with Large Plasma for HHFW	Wilson	н-
		Total Days	5.5
		E	

HHFW/EBW Breakout Summary

		6-5 5
S		Days
		for
		a
Circy	ority	XP's,
2		1
2	K	сл Г
Ű	n,	Day
)		S
フ		o r

	(
			X I CM	
lesearch				Running
Priority	Title	Author	Run Days	Total
A	HHFW Current Drive	Ryan	ယ	ω
A	X-Mode EBW Emission	Taylor	2	ഗ
A	O-Mode EBW Emssion	Taylor	0.5	ა ა
A	HHFW + NBI Ion Interaction	Rosenberg	2	7.5
A	Electron Heating with HHFW	Swain	2	9.5
A	HHFW Heating of NBI H-Mode	LeBlanc & Hosea	2	11.5
в	ITB High Te	LeBlanc, Swain & Hosea	2	13.5
C	HHFW H-Mode	LeBlanc	↦	14.5
С	Temperature Scan at Constant Densit	Ŷ	↦	15.5
C	Reverse Ip & TF	Bernabei	↦	16.5

Temperature Scan at Constant Density Reverse Ip & TF