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●   Objectives: Develop a Multiple-Input-Multiple-Output (MIMO) plasma shape/
stability controller for NSTX. Develop a flexible tool set for rapid,
model-based, multivariable controller development on NSTX.

●   Program: 3-Year => System model development, Experimental validation, MIMO
controller design, Simulation, MIMO algorithm & tool set distribution.

●   Needs Machine parameter data, Existing models (e.g. power supplies),
    Machine time: Year 1-2: 30-40 vacuum response shots,

Year 2-3: 20-30 plasma response shots
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NSTX MIMO BENEFITS

— Design methods enable highly accurate shape control in presence of
disturbances, noise and equilibrium uncertainty.

— Model-based MIMO control exploits knowledge of response of all output
control variables to all input actuators - This leads to superior control.

— Design methods provide for robust stability - Reduced sensitivity to plasma
parameter variations.

— Integrated (MIMO) control is the only practical method for Advanced Tokamak
(AT) Operation, which requires simultaneous control of strongly coupled
internal profiles and plasma shape.

— Controller development and primary testing can be done off-line.

— Synergistic with DIII-D's AT plasma MIMO control effort. Many tools already
developed for DIII-D can be readily applied to NSTX. Tool outputs readily
interface to existing PCS architecture.
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NSTX MIMO STRAWMAN MACHINE REQUIREMENTS

●   Vacuum Tests: Year 1-2: ( 2-3 shots per circuit + 10 extra => 30 - 40 shots )

— Single coil tests - PCS Sine wave input at different frequencies (1Hz-1kHz ?)

— Multiple frequencies per shot (4-5 frequencies/shot ?)

— Measure response at: PS, coils, sensors => Generate frequency response

— Validation: power supplies, coil, passive elements & magnetic sensors

— Extra tests useful for cross coupling & noise from other sources - TF coil …?

— Need date: Distributed over 2003-2004 Campaigns.

●   Plasma Tests: Year 2-3: ( ~10-20 shots)

— Vertical, horizontal plasma motion for range of Shape, Beta & li

— Can be as multiple cases per shot or as piggy-backs at end of discharge.

— Validation: plasma model, overall system model & controller properties.

— Need date: Distributed over 2004-2005 Campaigns.
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Preliminary NSTX Geometry in Matlab/Simulink (from EFIT file)
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A Complete Suite of Software Tools 
Is Available for PCS Development

• Simserver: Emulates the tokamak using shot data or a model based tokamak
simulator to provide off-line testing of the PCS

• Tokamak Models: A rich set of linear and non-linear plasma models are
available and integrated into our PCS development environment.

• MIMO: Multiple Input Multiple Output controller tools are available for the
design of robust shape and profile controllers.

• Tokamak Simulator: A relatively complete model of a Tokamak machine
(based on DIII-D) has been developed which can be generated as a stand alone
Simserver which connects to the actual multi-processor PCS to allow
emulation of an actual tokamak machine.

• PCS Simulator: A software model of the multi-processor, real time PCS
hardware/software is available for simulation of the control algorithms within
the PCS. It can be connected by sockets to the Tokamak Simulator for a
complete off-line simulation of the Tokamak/PCS.

Jal20_1-25-02



ADVANCED CONTROLLER DESIGN AND NEW SIMULATOR
IMPROVE PERFORMANCE AND ADD FLEXIBILITY

Advanced shape controllers are designed
and implemented within the PCS

A complete simulator of the DIII-D
plant has been developed

o Multiple-Input-Mulitple-Output (MIMO) design

o Completely model-based design technique

o Design and testing can be done off-line

o Preliminary results show good control over
   entire discharge
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o Models power supplies, coils and plasma

o Runs in parallel with actual PCS in place of DIII-D

o Excellent agreement is seen between
   experimental results and simulator
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DIII-D SIMULATOR
DIII-D SIMULINK MODEL
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Linear Plasma Response Model Based on Force Balance Relations

• Simple radial force balance:

Leuer 4-6-02 c_plasma_model
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• Simple vertical force balance:

• Circuit equation:

• State space model:
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• The plasma is modeled as a distributed
  current source and linearized about a
  distribution defined by the GA Equilibrium
  Fitting code (EFIT)



Comprehensive Development Tools are Available for Controller Design

● Multivariable controllers are used for tokamak control based on a rigorous,
model based design methodology using a dynamic state space MIMO structure.

 ● Tools and models are integrated with the PCS, and applicable to other machines.

jal23_1-24-02
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MIMO CONTROLLER, OPTIMIZED FOR X-POINT CONTROL, 
SHOWS EXCELLENT DYNAMIC PERFORMANCE

• X-point control was emphasized in
the MIMO design (higher weights).
This produced excellent control of
the X-point location
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• Vertical/shape control interactions
and lesser design emphasis on
other shape parameters led to
reduced control accuracy.

• Results of 1st MIMO experiments
on DIII-D (‘99) were very successful.

• Subsequent work has resolved
vertical/shape control conflicts.
(SOFT 2002)



MIMO Controller Linearized About a Single Point Controls an Entire DIII-D Discharge
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