<u>CY03 XPs Supporting Proposed MHD Stability</u> and Mode Control Research

S. A. Sabbagh

Department of Applied Physics and Applied Mathematics,

Columbia University

NSTX Forum - 9/11/2002

MHD Stability ET Group - Experimental Planning Session

Princeton Plasma Physics Laboratory

Fulfilling proposed research on global mode stabilization

- Past Columbia research grant objectives fulfilled
- Present NSTX plasmas are well advanced
 - □ Long duration, wall-stabilized plasma (many τ_{wall})
 - \square Operation significantly above no-wall β_N limit
 - Diamagnetic ST plasma
- Future research supporting three year DoE grant
 - Passive stabilization (including conducting plate re-design)
 - Resistive wall mode physics
 - \Box Wall-stabilized high β_N equilibrium resilience
 - Active feedback (including design GMS working group)

Experimental Proposals: CY 2003+

□ XP: Stabilization physics of resistive wall mode in high β_N ST

- □ Sabbagh, et al., aimed to utilize CY03 enhanced RWM diagnostic set
- □ Passive/active stabilization physics of the sustained, high β_N RWM
- XP: Aspect ratio effects on resistive wall mode stability (NSTX/DIII-D similarity experiment)
 - Sabbagh/Garofalo/Reimerdes et al., to be resubmitted to GA group Thrust #4 (Dec. 2002)
 - Pressure-driven mode/wall coupling and beta limit comparison
- □ XP: Rotation damping physics of the resistive wall mode
 - Zhu, et al., supporting graduate student thesis
- □ XP: Resilience of low A plasmas to kink/ballooning modes
 - Determine high/low-n kink/ballooning physics by crossing boundaries

Stabilization physics of resistive wall mode in high $\beta_N ST$

Motivation

- **Determine** / analyze high β_N RWM stabilization in ST geometry
- Goals
 - Stabilize RWM for long duration ($t >> 10 \tau_{wall}$) at various $\beta_N > \beta_{N no-wall}$
 - Choose configuration with high V_{ϕ}
 - Operate at lowest sustainable I_i to maximize $\beta_N / \beta_{N \text{ no-wall}}$
 - Determine dependence of rotation sustainment on q_{min}
 - \square Determine effectiveness of passive stabilization on β_{N} / $\beta_{N \text{ no-wall}}$
 - Determine dependence of critical rotation frequency on $\beta_N / \beta_{N \text{ no-wall}}$
 - **D** Measure δT_e evolution during RWM using unequal TS pulse interval

- Utilize initial active feedback system (when available)
- Utilize RWM advanced diagnostic set to be available in 2003
 - RWM sensors, 2D USXR, MSE, etc.

Passive stabilization less effective at highest β_N

Plasma sustained at 30% over no wall limit for 18 τ_{wall}

Passive stabilizer loses effectiveness at maximum β_N

VALEN growth time now much shorter (0.03 ms) at collapse time

 $V_{\phi}(0) \text{ increases} \text{ as } \beta_N >> \beta_N \text{ no-wall}$

 $\begin{array}{l} \text{Stabilizer regains} \\ \text{effectiveness after} \\ \beta_{\text{N}} \text{ collapse} \end{array}$

Operation above no-wall limit ceases when $V_{\phi}(0)$ small

<u>Aspect ratio effects on resistive wall mode stability</u> (NSTX/DIII-D similarity experiment)

Motivation

- Compare RWM physics between low and moderate A devices
- Goals
 - Create similar discharges with different aspect ratios
 - Match poloidal cross-section, β_N , proximity to no-wall limit
 - Compare RWM physics for similar and different edge q
 - Plasma / wall coupling
 - Rotation damping rate and critical rotation frequency
 - Radial variation of mode amplitude (rotation damping profile)
 - RWM growth rate
 - Determine key equilibrium differences producing RWM differences
 - Can present RWM stability theory explain differences in behavior by difference in aspect ratio and q?

Rotation Damping Physics of the Resistive Wall Mode

Motivation

- Determine the physics of rotation damping by the resistive wall mode
 - Present theories include sound wave damping, Alfven wave resonances, ion Landau damping, TTMP

Approach / Goals

- Conduct experiment that will vary key physics parameters in RWM rotation damping theories
 - Present NSTX RWM data indicates that disappearance of low-order rational surfaces (by B_t scan) can alter rotation damping
- Compare experimental results to all applicable theories
 - Including numerical models, if need be
- Work with proponents of the most promising theories to determine alterations needed to match experiment
 - Aspect ratio effects and poloidal mode coupling are neglected in many models. NSTX might clarify the role of these effects.

Resilience of low A plasmas to kink/ballooning modes

□ Approach

- Cross ideal low-n, high-n, and resistive wall mode stability boundaries and determine plasma dynamics in stability space
 - [•] does plasma return to a new equilibria, or suffer β collapse?
- Goals
 - Determine key physics of observed dynamics in stability space
 - Operate plasmas with flux surfaces in the high-n second stable region
 - Exploit synergistic effects of magnetic well at low A and current profile shaping to increase high-n stability

- Demonstrate plasma behavior when quickly thrust into high-n unstable region
- Demonstrate unique characteristics of second region boundary behavior expected at low A
- □ Examine role of FLR effects on high-*n* stabilization
- Note: internal magnetic data to determine q required for high-n stability diagnosis

Low A yields unexpected second stability behavior

- As P profile is scaled down
 - Closed unstable region shrinks and disappears
 - As β increases, marginally stable to high-n at β = 32.2%
- Due to higher order 1/A effects such as poloidal field curvature (destabilizing)
 NSTX

Duration and Required / Desired Diagnostics

- Each XP could be completed in 1 1.5 run days
- Required
 - Flux loops and integrated poloidal Mirnov coil data
 - CHERS toroidal rotation measurement
 - Locked mode detector measurements
 - Thomson scattering
 - Diamagnetic loop
 - USXR
- Desired
 - MSE
 - Advanced RWM sensors
 - Advanced USXR diagnostics
 - Toroidal Mirnov array
 - Fast camera

