# **H-mode Experiments**

Presented by

#### C. E. Bush

Princeton Plasma Physics Laboratory Princeton, September 11 & 12, 2002 **NSTX Forum September 2002** 

### H-mode Power Threshold Scaling: **Continuation of XP215**

C. E. Bush, R. Maingi, S. Kaye, S. Kubota, R. Bell, B. S. Sabbagh, V. A. Soukhanovskii, D. Stutman, LeBlanc, R. Maqueda, D. Mueller, F. Paoletti, and S. Zweben

Princeton Plasma Physics Laboratory Princeton, September 11 & 12, 2002 NSTX Research Forum 2002

# NSTX H-mode operating window.

- Obtained in lower-single null (LSN) and in double null divertor (DND) Obtained with NBI or RF heating, or both
- Wide range of NBI heating power: 0.32 7 MW
- Wide n<sub>e</sub> range at transition: 1.5 4.8e19 m-3
- Good I<sub>p</sub> range: 0.7-1.3 MA (NBI)
- B<sub>t</sub> range: 0.3 0.6 T
- The  $\beta$  range:  $\beta_t = 32\%$ ,  $\beta_p \le 0.95$
- Duration > 500ms (NBI)
- Power Threshold Studies underway interesting results
- ELM characterization underway

## Main Goals of XP

power (P<sub>th</sub>) on (in order of priority): Determine the dependence of the NSTX L-H threshold

$$B_t$$
,  $n$ ,  $I_p$ 

- international H-mode database (IHMDB) : • Compare the NSTX P<sub>th</sub> dependence to those for the
- Add the data from the P<sub>th</sub> study to the (IHMDB).

#### Secondary:

- Obtain and analyze detailed edge profile data and
- compare with L-H mode physics models and theories: - N<sub>e</sub>, T<sub>e</sub>, T<sub>i</sub>, V<sub> $\phi$ </sub>, fluctuations etc ...; ExB paradigm,
- critical values of edge T<sub>e</sub> and T<sub>i</sub>.

# Main Results from XP-215

- XP-215 database of 42 shots, 31 H-modes and 11 L-modes
- Good beginning on  $I_p$  and  $B_t$  scans
- Need high Ip point
- Bt scan partially corruted by presence of Neon (CHERS calib)
- All in LSND configuration
- But have  $P_{th}$  for DND at single  $I_p, B_t$  set from XP-227
- Interesting scaling indications
- Possible  $P_{th}$  scaling with  $I_p$
- Possible non-monotonic dependence on B<sub>t</sub>
- Have no density scan data

### Expected Results from Continuation of XP-215

- Better documentation for threshold and physics studies: Improved diagnostics
- MPTS: 60 Hz, 20 channel; CHERS; Edge FireTips
- Multiple fast fluctuation data: GPI, Probe, Reflectometers (UCLA,ORNL)
- Must make contact with previous run (after "Good" bakeout)
- Obtain Pth at high Bt
- Last run Bt scan was corrupted by Neon presence
- Obtain P<sub>th</sub> at high I<sub>p</sub>
- Do density scan for the first time (low, med, high)



## Threshold Powers (Pth) Obtained using Parameter and Configuration Scans

- H-mode studies with
- Pb, Ip, Bt scans
- Configuration scans
- Inner Gap scans
- Here Bt = 45 kG, Ip = 900kA
   Pb(@Pth) = 530 kW
- Note: L-H transition at
- the same time for all Pb
- At Bt = 45 kG, Ip = 600 kA
  Pb(@Pth) = 315 kW
  ==> Lowest Pth to date





L-H Threshold Study Shows Possible I<sub>p</sub> Dependence of  $P_{th}$ 





• Bt scan shots: 108830 - 108868



#### Expected Results fromContinuation of XP-215

- Better documentation for threshold and physics studies: Improved diagnostics
- MPTS: 60 Hz, 20 channel; CHERS; Edge FireTips
- Multiple fast fluctuation data: GPI, Probe, Reflectometers (UCLA,ORNL)
- Must make contact with previous run (after "Good" bakeout)
- Obtain Pth at high Bt
- Last run Bt scan was corrupted by Neon presence
- Obtain P<sub>th</sub> at high I<sub>p</sub>
- Do density scan for the first time (low, med, high)

#### of Power threshold studies END

#### **ELM Characterization on NSTX: Continuation of XP227**

C. E. Bush, R. Maingi, S. Kaye, S. Kubota, R. Bell, B. S. Sabbagh, V. A. Soukhanovskii, D. Stutman, LeBlanc, R. Maqueda, D. Mueller, F. Paoletti, and S. Zweben

Princeton Plasma Physics Laboratory Princeton, September 11 & 12, 2002 NSTX Research Forum 2002







### The Divertor Configuration Affects the Transition and the ELM Behavior in NSTX





(highly sensitive to temperature) extends to  $r/a \approx 0.3$ 



# What ELM Information is Needed?

- Characterization of parameter changes :
- Scaling of energy loss per ELM,  $\Delta n$ ,  $\Delta T$ , etc .. (already started)
- Radial extent of ELM perturbation Large, Med, Small ELMs
- Understand difference in ELM behavior with Divertor Configuration:
- Complete the Drsep scan Go from DND to SND (already started)
- Why DND ELM readily but SND does not?
- Why there is a very narrow access window for Giant ELMs?
- Needs for APS Invited Talk:

