Ideas for NSTX Research Forum ‘03

S. M. Kaye

NSTX Research Forum
12 Sept. 2003

Counter-injection

- A tool that can benefit most ETs
- MHD: Rotation effects on MHD stability
- T\&T: Generate large E_{r} (reduce L-H threshold power), Rotation effects on core microturbulence, Outward heat pinch (beam-thermal friction, a la Houlberg), High core confinement (improve performance).
- MHD: Rotation effects on MHD stability
- Boundary: Edge E_{r} effects on edge turbulence
- Fast Particles: Beam deposition, heating, importance of nonadiabaticity
- RF: Reverse B_{T} / I_{p} for phasing studies
- Large losses are anticipated, even at 1 MA
- This generates the large E_{r}
- Operate at $\max \mathrm{I}_{\mathrm{p}}(>1 \mathrm{MA})$ first to determine actual loss, heat flux to walls
- Reverse both I_{p} and B_{T}
- Reduce I_{p} gradually to increase loss and E_{r}

Intra-Machine Aspect Ratio Scaling (XP was approved)

- Generate equilibria in ratio range of $\mathrm{A}=1.25$ to 2.0 to assess confinement as a function of aspect ratio
- Investigation in OH and NBI at fixed R, $\mathrm{q}^{*}, \beta_{\mathrm{n}}$, κ
- Results will help to identify optimal R/a for NSTX c-s upgrade, NSST designs
- At fixed R, q^{*}, κ
$\tau_{E} \propto A^{-1} \quad$ (neo-Alcator scaling)
$\tau_{\mathrm{E}} \propto \mathrm{A}^{-1.8}$ (L-mode scaling)
$\tau_{\text {E }} \propto A^{-3.3}$ (H-mode scaling)
- Fixed R-a: beams miss highest R/a equilibrium
- Fixed R+a: beam losses too high for higher (lower) R/a (I_{p})

Fixed R equilibria can be produced, but near PF coil current limits at highest R/a

\mathbf{A}	\mathbf{a} $\mathbf{(c m})$	$\mathbf{I}_{\mathbf{p}}$ $\mathbf{(M A)}$	$\mathbf{K}_{\mathbf{x}} / \delta_{\mathbf{x}}$	$\mathbf{q}^{* /} \beta_{\mathbf{n}}$	$\mathbf{P F 1}$ $\mathbf{(k A)}$	$\mathbf{P F 2}(\mathbf{k A})$	$\mathbf{P F 3}(\mathbf{k A})$	$\mathbf{P F 5}$ $\mathbf{(k A)}$
1.25	67	1.00	$2.1 / 0.3$	$2.8 / 2.0$				
1.5	57	0.70	$2.1 / 0.3$	$2.7 / 2.0$	4.2	9.6	-4.6	-7.6
1.65	51	0.55	$2.1 / 0.3$	$2.6 / 2.0$	6.8	12.4	-4.1	-7.2
1.85	46	0.45	$2.1 / 0.3$	$2.6 / 2.0$	10.0	17.2	-4.9	-6.6

Issues

- Shape production
- PF coil currents near limits
- Vertical stability
- An issue for $k=1.9-1.9$
- Cannot run at lower k (required PF coil currents exceed limits)
- If vertically stable plasmas cannot be produced at $R / a=2.0$ or 1.75 , XP will be abandoned

