Transport scaling experiments

D. Stutman - Johns Hopkins University

- XP1 Transport scaling with configuration and plasma shape (early run 1 1/2 days)
- XP2 Intra-machine A-scaling of perturbative impurity/electron transport (mid run - 1 day)

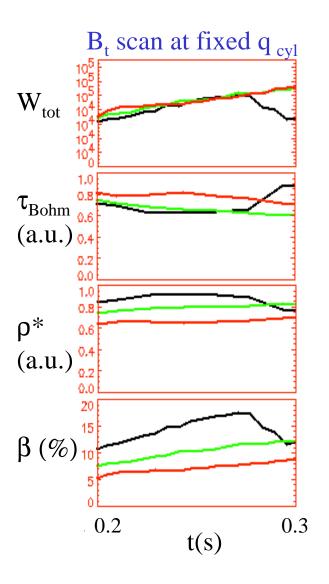
XP3 Dimensionless transport scaling (beta and rho-star) in H-mode discharges (late run - 2 days)

XP1 Transport scaling with configuration and plasma shape

- Confinement scaling in high triangularity DND plasma shows unusual characteristics (XP 223) :
- up to \approx 2.5 times L-mode scaling and steadily increasing
- weak or no I_p scaling
- decrease with n_e, then sudden increase (electrons) at low n_e
- fast degradation with P_{in} at 4.5 kG and no degradation (to a threshold) at 6 kG
- only small confinement increase at L-H transition
- peripheral (ion) turbulence depends strongly on B_t
- L-mode scaling: $\tau_E \approx 0.025 \ I^1 B^0 P^{-3/4} n^{0.4} R^2 (1/A)^0 k^{3/5}$
- Proposed XP will explore κ , δ and configuration dependence (LSN vs. DND)
- Neon injection will be used as an independent probe of ion transport
- LSN may allow longer discharges and access to higher τ_{E}

- DND: I_p scan at fixed B_t and n_e (restore XP 223 conditions) power scan with Neon injection at fixed I_p and maximum field elongation scan at fixed B_t, I_p, and n_e triangularity scan at fixed B_t, I_p, and n_e
- LSN: I_p scan at fixed B_t and n_e n_e scan at fixed I_p , and B_t power scan at fixed I_p , and two B_t values
- CSL: repeat LSN scans time permitting
- Estimated run time: 1 1/2 days

XP2 Intra-machine A-scaling of impurity/electron transport


- Results from previous runs consistently hint that electron transport is dominant in NSTX
- Looks like we traded electron confinement for improved ion confinement at low A and low field
- Is this a low aspect-ratio effect, or a low B effect ?
- Proposed XP will probe perturbative impurity transport (Ne puff or C pellet injection) and perturbative electron transport ('cold-pulse' with impurity pellet), at two extreme aspect ratio and field values
- The XP will use discharges developed in the intra-machine A-scaling XP225 (S. Kaye) and early experience with pellet injection
- Estimated run time: 1 day

XP3 Dimensionless transport scaling - beta and rho-star

- High confinement at high beta is major NSTX milestone
- XP 223 suggests that beta scaling cannot be very strong

 $\tau_{\rm E} \approx \tau_{\rm B} \ \rho^* \, {}^{x\rho} \ \beta^{x\beta} \ \nu^* \, {}^{x\nu} \ q_{\rm cyl} \, {}^{xq}$

- Dimensionless scaling experiments required to separate eventual rho-star/beta scaling
- Scaling in H-mode first priority
- Rho-star scaling using B_t : β , ν^* , q=const. -> n ~ B^{4/3}, T~B^{2/3}
- Beta scaling using B_t:
 ρ*, ν*, q=const. -> n ~ B⁴, T~B²
- \bullet Will assume weak ν^{\star} dependence
- RF needed to control T, possibly also density control

Parameters of DIII-D rho-star and beta scans

Table II. Engineering and Dimensionless Parameters for the H Mode Beta Scaling Experiment

TABLE II.	Engineering	parameters	for	H-mode	dimensionally
charges on	DIII-D and p	projection to	ITI	ER.	

	DIII-D			
<i>В_T</i> (Т)	0.95	1.9		
a(m)	0.62	0.62		
$I_{p}(MA)$	0.66	1.33		
$I_p(MA)$ $\bar{n}(10^{19} \text{ m}^{-3})$	2.8	5.5		
Z _{eff}	1.6	1.4		
W _{th} (MJ)	0.24	0.91		
P _{tot} (MW)	3.4	6.1		
$\tau_{\rm th}({\rm s})$	0.069	0.148		
H	2.0	2.2		

Parameter	Discharge			
	90117	90108		
B (T)	1.62	1.93		
R (m)	1.67	1.68		
a (m)	0.61	0.61		
I (MA)	1.13	1.35		
\bar{n} (10 ¹⁹ m ⁻³)	3.60	7.39		
$W_{\rm th}$ (kJ)	274	847		
P(MW)	1.73	6.26		
$\tau_{\rm th}$ (s)	0.158	0.135		
R/a	2.76	2.76		
κ	1.81	1.84		
δ	0.23	0.24		
ℓ_i	1.22	1.16		
q 95	3.76	3.88		
\bar{n}/B^4	0.53	0.53		
$W_{\rm th}/B^6$	15.4	16.3		
$\beta^{\text{th}}(\%)$	0.92	1.97		
$\beta_{\rm N}^{\rm th}$	0.80	1.71		
$B au_{ m th}$	0.255	0.262		

• Estimated run time - 2 days