

NSTX 2010 Experimental Proposals: RWM Passive Stabilization Physics

Jack Berkery

Department of Applied Physics, Columbia University, New York, NY, USA

NSTX Research Forum PPPL, Princeton, NJ December 1-3, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst RRC Kurchatov Inst TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP. Garching ASCR, Czech Rep

U Quebec

College W&M

Colorado Sch Mines

Columbia U

CompX

General Atomics

IIVL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

New York C

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

•..<u>-</u>

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Illinois

.... . .

U Maryland

U Rochester
U Washington

.....

U Wisconsin

RWM passive stability vs. rotation at low $\ell_{\rm i}$

Motivation

- Kinetic theory indicates that plasmas with ω_{φ} in between ω_D and ω_b resonances have weakened stability.
- It is key to understand passive stability in regimes of high importance to the future of the ST (low ℓ_i).

Goals

- Measure RWM γ and ω_r as a function of ω_{φ} in low ℓ_i plasmas with MHD spectroscopy and compare to kinetic theory prediction calculated by MISK.
- Provide input to the eventual goal of realtime stability limit detection via resonant field amplification (RFA) measurement.

RWM passive stability vs. rotation at low ℓ_{i}

Addresses:

- NSTX Milestone R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit.
- ITPA: MDC-2: Joint experiments on resistive wall mode physics.
- ITPA: MDC-12: Non-resonant magnetic braking.
- ReNeW Thrust 16 proposed action: Implement and understand active and passive control techniques to enable long-pulse disruption-free operation in plasmas with very broad current profiles.

NSTX plasmas can go unstable at weakened stability rotation, or can navigate through to low rotation

- Weakened stability occurs at relatively high rotation when $\omega_{_D}$ is between $\omega_{_D}$ and $\omega_{_h}$ stabilizing resonances
 - Some shots are able to avoid RWM instability, make it to low $\omega_{\scriptscriptstyle \Phi}$

NSTX Research Forum – RWM Physics (Berkery)

NSTX experimental instability

Active MHD spectroscopy can measure growth rate and mode rotation frequency

Comparing measured γ and ω_r to theory will improve understanding of RWM stability.

121083 @ 0.475 s

Realtime stability limit detection via RFA is an eventual goal

- This experiment can also provides valuable data to the eventual goal of realtime stability limit detection via RFA.
 - we will also make some scans of β_N .
 - Picks up from XP930 proposed last year for that purpose.

$$RFA = \frac{B_{R,Diff,Peak-to-Peak}}{I_{RWM,Peak-to-Peak}}$$

(Gerhardt, XP930 presentation, 2009)

RWM passive stability vs. rotation at low $\ell_{\rm i}$

Approach

- Establish target plasmas at low ℓ_i .
- Optimize n=3 non-resonant magnetic braking to consistently get through to low rotation without RWM instability.
- Add n=1, 30 Hz., 1kA peak to peak traveling wave for active MHD spectroscopy.
- Change plasma conditions and repeat for comparison to theory at multiple conditions.
- Do several β_N scans for the eventual goal of realtime stability limit detection via resonant field amplification (RFA) measurement.

RWM Stabilization by Energetic Particles

Motivation

– Kinetic theory (still improving) indicates that energetic particles have a stabilizing effect on the RWM that is independent of ω_{ϕ} .

Goals

- Scan energetic particle content using RF heating.
- Compare RWM stability to theoretical predictions, validating theory and improving understanding of energetic particle effects.

• Addresses:

- NSTX Milestone R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit.
- ITPA: MDC-2: Joint experiments on resistive wall mode physics.
- ITPA: MDC-12: Non-resonant magnetic braking.

Energetic particles contribute linearly to RWM stability

- XP932 in 2009 scanned energetic particle content with B_t,I_p
 - Larger $\beta_{fast}/\beta_{total}$ leads directly to greater stability in kinetic theory.
 - β_N also changed in this scan. Use RF to change energetic particle content at constant β_N .

RF heating affects energetic particles and plasma rotation

- Use of RF as a tool for changing E.P. content and rotation:
 - enhancement and broadening of fast ion profile with HHFW.
 - edge rotation locked, and core rotation damped during HHFW.

RWM Stabilization by Energetic Particles

Approach

- Establish target plasmas without RF heating and apply n=3 non-resonant magnetic braking to get unstable RWM.
- Establish target plasmas with RF heating.
- Determine the effect of RF heating on plasma rotation, in conjunction with n=3 non-resonant magnetic braking.
- Brake plasmas to get unstable RWM.
- Change RF heating to alter the energetic particle content at similar β_N . If rotation substantially changes as well, change braking to try to return to a similar state.

RWM Passive Stabilization Physics - Diagnostics

Required diagnostics / capabilities

- Ability to operate RWM coils in n = 3 configuration
- RWM sensors
- CHERS toroidal rotation measurement
- Thomson scattering
- USXR
- MSE
- Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
- Diamagnetic loop
- FIDA

Desired diagnostics

- FIReTip
- Fast camera
- CHERS poloidal rotation measurement

