

Supported by

Optimization and Utilization of Beta-Control

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.P. Gerhardt, E. Kolemen, D. A. Gates, S. A. Sabbagh

NSTX 2010 Research Forum MS TSG Breakout Session Dec. 1st, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Overview

- Background
 - Rudimentary PCS control of NB injection was shown in 2008.
 - $-\beta_N$ control was demonstrated in 2009.
 - Not "tuned up".
 - Improved rtEFIT basis vectors were implemented at the very end of the 2009 run.
- Goals of Proposed XP:
 - Achieve reasonable values of the parameters in the β_N control algorithm.
 - Test the ability of β_{N} control to enable non-disruptive operation near the β_{N} limit.
- Contributes to:
 - MS Milestone R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit.

Implementation of β_N Control in NSTX

• Compare filtered β_N value from rtEFIT to a request, and compute an error.

$$e = \beta_{N,reqeust} - LPF(\beta_{N,RTEFIT};\tau_{LPF})$$

• Use PID on the error to compute a new requested power.

2009 PID Algorithm
$\Delta P_{inj} = P_{\beta_N} \overline{C}_{\beta_N} e + I_{\beta_N} \overline{C}_{\beta_N} \int e dt + D_{\beta_N} \overline{C}_{\beta_N} \frac{de}{dt}$
$P_{inj,i} = P_{inj,i-1} + \Delta P_{inj}$
$\overline{C}_{\beta_N} = \tau \frac{I_P V B_T}{200 \mu_0 a} \cdot \frac{dt}{0.001}$

$$2010 \text{ PID Algorithm (?)}$$

$$P_{inj} = P_{\beta_N} \overline{C}_{\beta_N} e + I_{\beta_N} \overline{C}_{\beta_N} \int edt + D_{\beta_N} \overline{C}_{\beta_N} \frac{de}{dt}$$

$$\overline{C}_{\beta_N} = \tau \frac{I_P V B_T}{200 \mu_0 a} \cdot \frac{dt}{0.001}$$

- Use power from the PID operation, source powers, and "batting order" to determine the duty cycles for each source.
- Use the duty cycles and min. on/off times to determine when to block.

Many Available Adjustments

- Filter time constant on the β_N value sent from rtEFIT.
 - Useful for smoothing transients in the measured β_N .
- Proportional, integral, and derivative gains.
 - Determines the response of the system to transients.
- Batting order array.
 - Determines which sources modulate
 - Switch to a different source if a given source reaches the maximum number of blocks.
 - Also able to prevent A modulations, to keep MSE and CHERS.
- Source powers
 - Can be adjusted in order to prevent modulations.
- Minimum Source On/Off Times.
 - Smaller values will lead to better control, but possibly at the expense of source reliability.
 - 20 msec. has seemed OK so far.

β_N Control Has Been Demonstrated in 2009

- β_N algorithm compensates for loss of confinement with n=3 braking.
- Control works over a range of rotation levels.
- Goal of XP is to optimize the system.

S.A. Sabbagh, 2009 NSTX Results Review

Modifications to the rtEFIT Basis Functions Resulted in Improved Real-time Reconstructions

- Occasional poorly converged equilibria lead to incorrect outer gap, β_N
 - Kick off an deleterious transient in the vertical field coil current.
 - Edge current not allowed
- New basis function model based on those developed for off-line magnetics-only reconstruction (Columbia University) $p'(\psi_n) = a_1 \psi_n (1 \psi_n)$
 - Tested on literally > 2 million equilibria
 - Finite edge current through $ff'(\psi_n)$

$$ff'(\psi_n) = b_0 + b_1 \psi_n \left(1 - \frac{1}{3} \psi_n^2\right) + b_2 \psi_n^2 \left(1 - \frac{2}{3} \psi_n\right)$$

- Considerable real-time reconstruction improvement
 - Reduction in β_N "noise" indicative of improved reconstructions

Improvement made on 2nd to last day of run....we should take advantage of it this year.

Simple Model For NB Heating

• Coupled equations for the stored energy in thermal particles and fast particles. $W_t = W_t = W_t$

- Two free parameters in model:
 - Time-scale for thermal energy loss: $\tau_{E,th}$
 - Time-scale of energy transfer from fast to thermal particles: $\tau_{\rm f}$
- Compute these parameters using beam modulations and TRANSP
- Simple model designed for control.
 - No direct fast-ion loss.
 - Collapse thermal electron and ion energy loss rates into a single parameter.
- Tune the model parameters (τ_f , $\tau_{E,th}$, p_{exp}) with TRANSP.
- Use model in a feedback simulation to get gains correct.

Example: Proportional And Integral FB, Modulating All Sources

XP Plan: Algorithm Optimization (1/2 day)

- Establish a high-performance reference.
 - Should be long pulse at 4 MW, to allow room for modulations.
 - Consider 700-800 kA fiducial.
- Add in β_N control with reasonable parameters, step in β_N request.
- Adjust gains to achieve best match to desired waveform.
- What min on/off times to use?
 20/20 was used last year.
- Use full RWM control.

XP Plan: Test For Disruptivity Reduction (1/2 day)

- Establish a discharge regime that disrupts with a 6 MW of input power.
 - Maybe just use the previous 700 kA target?
- Re-run with β_N request reasonably below the disruptive value.
 - Should not disrupt any more
- Increase the β_N request in small increments to where it disrupts.
 - Bracket the unstable heating power.
- Adjust the source voltage to achieve approximately the same waveforms.
 - These are pre-programmed
 - Re-run and see if the level of β_N fluctuations is increased, disruptions re-appear.
- Status of RWM Control?
 - Inclined to use slow control (DEFC), but not fast feedback.
 - Provides test of disruption control in the wall-stabilized regime.

Backup

Example of Model

- Solid: TRANSP Quantities
- Dashed: Model
- 900 kA fiducial like discharge

Simulation #1: Proportional FB Only, Modulating All Sources

0 NSTX

Simulation #2: Proportional And Integral FB, Modulating All Sources

Simulation #3: Proportional And Integral FB, Modulating B & C Only

β-Control Optimizations (Gerhardt et al.)