

Supported by

Influence of LLD induced collisionality and profile effects on ST MHD stability

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J. Menard, PPPL S.P. Gerhardt, S.A. Sabbagh, J.K. Park,

NSTX FY2010 Research Forum LSB B318, PPPL December 1, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Goal: Assess impact of reduced density and collisionality on global MHD stability using LLD

- Background:
 - LITER resulted in temperature profile broadening and reduced internal inductance
 - LITER reduced edge and core collisionality and increased NTV flow damping
 - The effect of the LLD will likely be more pronounced
 - Dedicated scans of plasma density and collisionality are warranted in order to understand the broader impact of LLD on MHD stability

• Experimental questions:

- -Will pressure profile broadening be beneficial?
- -Will this out-way destabilization from broader J?
- Will lower ν^* increase NTV braking from error fields and RWM, or favorably reduce tearing drive?
 - Low ν^{*} could modify optimal EFC due to different flow-damping profile from plasma and coil δB
- How will RWM stability change?

Experimental Approach/Plan: (1.5 day request, 1 day minimum useful)

- Develop reference non-LLD discharge operating above n=1 no-wall limit
 - Use n=3 EFC, but no (or slow) n=1 feedback
 - Measure ideal-wall beta-limit use NBI pulses to exceed β limit, induce partial β collapse
 - Apply n=3 pulse and measure rotation and flow damping rate
 - Apply n=1 pulse to measure n=1 RFA, measure decay to obtain stable RWM γ
 - Could also use n=1 travelling wave + frequency scan
- Reduce density with LLD by 20-40% use NBI feedback to control β
 - Compare q and rotation profiles with and w/o Li/LLD
 - Try to find time in lower $n_{\rm e}$ shot with similar q profile as higher $n_{\rm e}$ case
 - Re-measure β limits with NBI pulses
 - If plasma remains n=1 RWM stable
 - Measure n=3 rotation damping
 - Measure n=1 RWM stable growth rate
 - If plasma becomes n=1 RWM unstable, activate n=1 feedback control
 - If plasma still unstable, scan n=1 feedback gain and phase to re-establish stability
 - Measure n=3 rotation damping rate
 - Transiently turn off n=1 feedback and measure intrinsic RWM growth rate
 - Document changes in tearing mode behavior