

Supported by

RFA Suppression With Different Sensors and Time Scales in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. P. Gerhardt, J. E. Menard, S. A. Sabbagh

> NSTX 2010 Research Forum MS TSG Breakout Session Dec. 1st, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Overview

- Background:
 - RFA is the amplification of "error fields" by a stable RWM
 - The resulting rotation damping can destabilize the RWM.
 - In 2007, JEM utilized RFA to develop a DEFC scheme.
 - Used B_P sensors only.
 - New compensations have been implemented in real-time, allowing better mode identification using B_R sensors.
- Goals of Proposed XP:
 - Determine B_R sensor FB parameters which are optimal for error field correction.
 - Examine system response to applied n=1 fields.
 - Examine system response to the intrinsic time-varying error field.
 - Attempt to minimize rotation damping using B_R feedback.
 - Fast feedback is out of scope.
- Contributes to:
 - MDC-2: Joint experiments on resistive wall mode physics
 - MS Milestone R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit.

New Realtime Sensor Compensations For Improved Mode Identification

- Sensors should measure the n=1 field from the plasma only.
 - Need to "compensate" the ith sensor B_i for other sources of field
 - With proper compensations, vacuum shots produce no signal
- Three compensations now in realtime system

$$\begin{array}{l} \hline \textbf{OHxTF}\\ \textbf{New For 2010} \\ f_i = LPF(I_{OH} \times I_{TF}; \tau_{OHxTF,i}) \\ f_i = \frac{f_i}{1 + \beta_i f_i} \\ \textbf{if } f_i > 0 \textbf{ then } C_{OH \times TF,i} = r_{p,i} f_i \\ \textbf{if } f_i < 0 \textbf{ then } C_{OH \times TF,i} = r_{n,i} f_i \\ \textbf{96 Coefficients} \end{array}$$

AC Compensation For
Fluctuating RWM Coil Currents
New For 2010 $C_{AC,i}(t) = \sum_{j=0}^{5} \sum_{k=0}^{k_{max}} p_{i,j,k} LPF\left(\frac{dI_{RWM,j}(t)}{dt}; \tau_{AC,i,k}\right)$ 504 Coefficients

Final Field For Plasma Mode Identification

$$B_{i,plasma} = B_i - C_{i,static} - C_{i,OH \times TF} - C_{i,AC}$$

OH x TF Compensations Important For The B_R Sensors

DEFC Comparison With Different Sensors (Gerhardt, et al.)

OH x TF Compensations Important For The B_R Sensors

() NSTX

DEFC Comparison With Different Sensors (Gerhardt, et al.)

AC Compensations Remove dl_{RWM}/dt Driven Eddy-Current Pickup

$$C_{AC,i}(t) = \sum_{j}^{NumRWMCoils} \sum_{k=0}^{k_{max}} p_{i,j,k} LPF\left(\frac{dI_{RWM,j}(t)}{dt};\tau_k\right)$$

 Sensors should measure the n=1 field from the plasma only.

- Direct mutual coupling of RWM coil to sensors has always been subtracted off in PCS.
- Eddy currents due to dl_{RWM}/dt still lead to pickup without plasma.
- These AC compensations are now implemented in PCS, and can be useful for:
 - Mode identification during fast feedback.
 - SAS proposal on fast feedback
 - Mode identification with rapidly changing preprogrammed currents.
 - ELM triggering experiments for example.
 - Future realtime RFA measurements.

Example Compensations: Vacuum shot with a single RWM Coil Energized...should be no pickup! Red: Fully Compensated (Now in PCS) Blue: Full Pickup

Brown: Direct Pickup Only Subtracted (Previously in PCS)

2007 Experiment Had a Phase Scan... ...and a Gain Scan

- Pre-programmed n=1 EF correction requires a priori estimate of intrinsic EF
- Detect plasma response → EF correction using <u>only feedback on RFA</u>

→ Use same gain/phase settings to suppress RFA from intrinsic EF **and** any unstable RWMs

2008 Also Had Feedback Attempt With B_R Sensors

- Combined B_P + B_R
- B_R feedback phases
 around ~290
 appear to be useful.
- B_R feedback gains of 0.7 appeared stable.
 - Use these parameters as starting points for the XP.

XP-802, Sabbagh et al.

Shot List

•	 Qualify the reference discharge. High-β discharge with n=3 correction, but no fast feedback. 800 kA SAS and JB shots with high β_N from 2009? Should suffer a rotation collapse and RWM Induce with n=1 applied field as necessary (as in XP-701). Phase relationship with OHxTF field? 	(4 shots)
•	 Apply (only) B_R n=1 feedback with varying phases and gains. Low-pass filter the feedback request in order to eliminate fast feedback. Start with gain and phase from XP-802. 	(10 shots)
	 Scan bothdoes the filtering from passive plates allow a higher stable gain? Try to achieve cancellation of the EF effect as in XP-701. Repeat best test with OHxTF compensations turned off. Particular emphasis on the edge rotation sustainment 	
•	If applied fields used to stimulate RFA, repeat with intrinsic EF. – Shots with both "optimal" B_p and B_p feedback separately, then combined.	(5 shots)
•	 Apply B_P n=1 feedback on the same situation. Recreate phase scan in XP-701 for comparison. Test FB noise level, rotation evolution in similar situationscan B_P cancel better? 	(6 shots)
•	 Test compensation of time varying error fields. Choose "best" sensor polarity, phase and gain. Apply n=1 TWs with 10, 20, 30, 40 Hz. 	(6 shots)
	 Test of AC compensationrepeat without AC compensations turned on. 	

Backup

Goals For Proposed Experiment

- Qualify B_R sensors for error field correction.
 - Determine the optimal phase shift and gain for DEFC.
 - Can start with results from Steve's
 - Determine if OHxTF sensor compensation is necessary...or beneficial...or irrelevant.
 - Fast feedback is out of scope
- Determine if one or the other sensor type is better for correction:
 - Reduced fluctuations in the FB coil current?
 - Improved rotation sustainment?
 - Higher gain?
- Examine β -dependence of FB response.

AC Compensations Can Be Important For

2007 Experiment Had a Phase Scan... ...and a Gain Scan

NSTX

Other Stuff

- Lithium
 - LITER at ~200 mg/shot
 - No LLD
- Diagnostics
 - Profile diagnostics
 - RWM detection

- Analysis
 - MSE reconstructions.
 - DCON for proximity to ideal stability limits.
 - Intrinsic EF and detailed RWM sensor analysis.

OH x TF Compensations Important For The B_R Sensors (II)

