Testing the Weak Shear / Rational q Model to Make ELM Suppression on NSTX

An idea by Richard Buttery ${ }^{1}$

Presented to the NSTX Research Forum, March 2011
${ }^{1}$ General Atomics, USA
${ }^{2}$ Princełon Plasma Physics Laboratory, NJ.

${ }^{3}$ Columbia University, NY.
Work funded by the US DOE.

Can RMP-ELM effect be a Resonance with Weak Shear Rational q in Pedestal?

- Ideal \& vacuum 3D response predicted broad q resonance Magnetics - Observe narrow q resonance - reminiscent of JET snake:
- Filament at $\mathrm{a}_{\text {min }}=2$ matches B \& Te observations
- Weak shear readily modified by tiny current, ~1kA

1kA model Experiment

- Can this arise with the ELM?
- High bootstrap leads to zero or weak shear $\boldsymbol{\rightarrow}$
- Flux readily perturbed when this has rational q value
\checkmark Narrow q_{95} window, low v^{*}, β dependence
ELM effect may not be snake - point is topology is readily altered, could be ideal-like distortion, or just changed turbulence

How to test this on NSTX

- Key issue is to have edge bootstrap to reach weak/zero shear
- High lithium, high shape, double (???) null, lowest possible density, fiddle with X point location (advice from Rajesh)
- Can you still make large ELMs then?
- (Harder to reverse shear in ST - but weaken it...?)
- Configure RMP coils for optimal edge resonance
- N=3 fields I guess!
- a_{95} ramp as usual
- Distortion requires least free energy at integer a (then get 3 separate 12/3 filaments, but only 1 needs to grow)
- Look for:
- Complete ELM suppression
- Narrow q resonances in any effect
- eg ELM frequency, density pump, turbulence measurements
- Finger like structures (what diagnostic?)
- Ladders on magnetic spectrogram or SXR
- Add a bit of Argon or Neon to light up filaments/fingers on SXR?

