

College W&M Colorado Sch Mines

Columbia U

**General Atomics** 

Johns Hopkins U

Nova Photonics

**Old Dominion U** 

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

**U** Colorado

**U Maryland** 

U Rochester U Washington

**U Wisconsin** 

**U Illinois** 

UCLA

UCSD

CompX

INEL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

Lodestar

Supported by



# Plasma Electron Spectroscopy (PLES) for Deuterium, Lithium and Impurity Monitoring

M.A. Jaworski (PPPL), et al.

#### NSTX 2011 Research Forum LRTSG Session LSB-252 – 1:30-5:30pm, March 16, 2011





Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

## Electron energy distribution function (EEDF) provides insight into SOL processes

- Classical interpretation "throws away" data above floating potential
- First derivative method (Popov, 2009, PPCF; Arslanbekov, 1995, PSST) provides interpretation of complete characteristic
- In principle, EEDF contains resulting distribution of electrons after numerous interactions in the SOL
  - e.g. inelastic interactions increase low energy population (D or different impurities, diff. energies)
  - Plasma potential can be evaluated for sputter yield estimation





#### **First results are encouraging**

- In general, lower Te obtained than classical interpretation, consistent with divertor Thomson comparisons on DIII-D (Watkins, 2001, JNM)
- Bi-modal distribution found to be typical (predicted by kinetic codes of Chodura and Batischev)
- Transition energy in bi-modal distribution typical of deuterium inelastic interactions (many examples of ~13eV transition)
- Suspected deuterium-absorbing LLD shot (e.g. high gas fueling but similar total deuteron content) shows transition to higher temperatures via larger hot fraction



Д

**(D)** NSTX



#### **EEDF comparison with active(?) LLD**

- Similar times in discharge, similar magnetic locations in SOL
- Higher gas fueling in 139404, yet similar core density
- Reduction in bi-modal character (statistical similarity with single temperature fit indicated by Goodnessof-Fit metric)
- Shifts in EEDF consistent with reduced recycling:
  - Transition to single Maxwellian distribution (Chodura, 1992, CPP)
  - Increase in plasma temperature indicates reduction in energy loss terms (e.g. inelastic collisions)
  - Change in transition energy to below hydrogen excitation energy
- Indicates that the Langmuir probe may be a power diagnostic of the PMI processes in the divertor





### XP A: PLES aims to confirm Langmuir probe interpretation and test MAPP for independent neutral detection

- Previous impurity or D2 injection shots in high-triangularity shape – not optimal for HDLP data acquisition
- This XP will place strike-points on probes and actively inject impurities into the divertor region
  - D2, CD4, He, Ne, Ar
  - Monitor changes in HDLP and look for changes in EEDFs
- Will confirm and aid development of Langmuir probe interpretation and usage as deuterium and/or impurity detector
- This XP will also determine MAPP sensitivity to neutral deuterium content during D2 injection shots as an additional means for monitoring of neutrals





#### **XP A: PLES shot listing**

- Establish reference discharge (similar to LLD shots with SP control)
- Perform MAPP exposure in reference discharge, retract, perform TDS.
- Determine optimal injection location (lower divertor vs. outboard injector)
- Perform gas injections (He, CD4, Ne, Ar) at multiple (3) rates saving D2 injection for last
- On final discharge with D2 injection, insert MAPP, expose to discharge, retract and perform TDS.
- Some other time, perform reference MAPP exposure: insert into torus, inject D2 without discharge, retract and perform TDS.
- 1.5 days requested, 0.75 days minimum
- Establishes HDLP response to impurities and deuterium content aids interpretation of suspected reductions in local recycling via EEDF changes
- Establishes MAPP response to increased neutral deuterium content in the edge of NSTX provides measure of neutral deuterium uptake (i.e. wall pumping)
- Attempts to start understanding: significance of wall pumping effects in lithiated machine vs. pumping in the divertor region itself



#### XP B: SOL and PFC modification during in-situ lithiumization via dust injection and diffusive evaporation

- XP1056 last year attempted to quantify additional benefit of dust injection:
  - LITER at 30 mg/min
  - LITER (30mg/min)+dust 200mg/s
- Observed reductions in metal content, but overall radiation did not change
- However, high-triangularity shape placed outer strike-point near inboard Langmuir probe at 50cm
  - Indicated reduction in Isat by about 40%
  - Evaluation of Ne at ~700ms indicates density reduced by ~50%
  - i.e. addition of large quantity of particles results in reduced density at outboard target(?)
- Density reduction indicates LP is viable diagnostic for evaluating the quality of wall conditioning on a given flux tube (i.e. even though SOL flow sent dust toward inboard)



#### Parameters at 700ms

| Shot   | Te [eV] | Ne [m-3] |
|--------|---------|----------|
| 140559 | ~11     | 4.8e19   |
| 140562 | ~12     | 2.4e19   |

Isat ratio = 1.6 Ne ratio (Isat) = 2.0 Ne ratio (EEDF) = 1.8



#### **Characterize effectiveness in LSN and DN**

- Dust injection may provide means of "refreshing" the lithium layer during a discharge (c.f. EAST long-pulse operation)
- Double-null operation planned as part of high-power NSTX-U scenarios
  - If Li is "standard" for NSTX-U, how do we coat upper PFCs?
  - Evaluate coating effectiveness by density change at other flux-tube end in DN discharges
  - Redepositing Li used on TFTR and on CPS based Li machines like FTU
    - Is the co-deposited coating different than evaporation + bombardment?
    - Utilize MAPP to compare in-situ co-deposited layers for D content with TDS
- Measure target density during LSN and DN operation with diffusive evaporation and powder injection (separately)
  - Compare change in density, look for saturation by "turning off" application technique and repeating discharges
  - Expose MAPP during dust injection, expose MAPP during diffusive evap analyze with TDS to determine absorbed D in films – compare with LITER reference discharge
- Significant difference between co-deposited and evaporated films may indicate improved Li delivery systems for the upgrade
- 1 day requested, 0.5 minimum



#### XP C: Comparison of local plasma parameters between Li and de-conditioned Li-wall conditions

- Depends on the development of de-conditioning procedure in XMP
- Utilize medium triangularity shape (outer strike on HDLP/LLD, inner strike on inboard probe)
- Expose MAPP to de-conditioning procedure, but no discharge retract and perform full analysis
- Obtain plasma characteristics with HDLP during discharge
- Repeat de-conditioning procedure with MAPP exposed AND expose MAPP to full discharge (repeat HDLP data collection) retract and perform full analysis
- If not obtained, perform similar exposure and analyses with LITER wall conditioning
- 0.5 days requested, 0.5 days minimum

| Conditioning    | Local Plasma            | MAPP TDS                       | MAPP XPS                        | MAPP DRS                     |
|-----------------|-------------------------|--------------------------------|---------------------------------|------------------------------|
| LITER           | Higher Te? Lower<br>Ne? | Low D quant.                   | Less C due to Li<br>coverage?   | Li coverage?                 |
| LITER+disch.    | *                       | Medium D?                      | More C due to Li removal/redep? | Less Li coverage,<br>more C? |
| De-cond.        | Lower Te? Higher        | High D?                        | ?                               | More D coverage?             |
| De-cond.+disch. |                         | No change in D from<br>before? | More C due to<br>redep?         | Same D coverage?             |



#### XP D: Comparison of local plasma parameters between Li and boronized wall conditions

- Depends on whether a boronization campaign is conducted
- During TMB expose MAPP, retract and perform full analysis on deposited coatings
- Obtain HDLP signals for comparison
- Repeat before/after discharge analysis as in XP C, except for "typical" boronized wall conditioning (i.e. He-GDC)
- Compare resulting Langmuir probe signals and MAPP measurements of absorbed D, near-surface chemical content and surface composition
- 0.5 days requested, 0.5 days minimum

|   | Conditioning   | Local Plasma                                | MAPP TDS                        | MAPP XPS                  | MAPP DRS         |
|---|----------------|---------------------------------------------|---------------------------------|---------------------------|------------------|
|   | Boron+He-GDC   | Te and Ne compared<br>to de-conditioned Li? | Lower D quant.                  | Less C due to B coverage? | B coverage?      |
|   | post-discharge |                                             | Medium D?                       | More C due to B           | More C than B?   |
| Ν | STX            | Lithium Research Top                        | pical Science Group: Research I | riorities and Agenda      | March 15th, 2011 |





#### Heuristic explanation for a bi-modal distribution

- Original Maxwellian is convolved with an inelastic cross-section
- Reaction generates new electron with low energy and original electron loses ionization energy
- Result is a non-Maxwellian distribution that will relax toward a bi-modal distribution
- Only a fraction of highenergy electrons react, though, and a hot tail population still appears at the target



