

Supported by

NSTX 2011-2012 Experimental Proposals: RWM Passive Stabilization Physics

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J.W. Berkery,

S.A. Sabbagh, J. Hanson

Department of Applied Physics, Columbia University, New York, NY, USA

D. Battaglia

Princeton Plasma Physics Laboratory, Princeton, NJ, USA

NSTX Research Forum March 15-18, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Two RWM Passive Stabilization Physics XP Proposals

- 1. RWM Stabilization Dependence on Energetic Particle Distribution
- 2. RWM Stabilization Physics at Reduced Collisionality

2

RWM Stabilization Dependence on Energetic Particle Distribution

Motivation

[J.W. Berkery et al., Phys. Plasmas 17, 082504 (2010)]

- EPs are known to play an important role in RMW kinetic stability.
- NSTX-U will have an off-axis neutral beam, so it is important to assess the profile and pitch angle dependence on stability.
- Comparison to DIII-D through 2011 joint experiment.
- Goals
 - The physics of resistive wall mode (RWM) stability on the kinetic effects of energetic particles (EPs) will be investigated by changing the EP distribution function, principally from using off-axis neutral beam injection in downward or horizontally shifted plasmas.
- Addresses:
 - ITPA: MDC-2: Joint experiments on resistive wall mode physics.

Including anisotropy requires rewriting code for general f and including new terms

Isotropic Maxwellian:

$$\delta W_K = \sum_j \sum_{l=-\infty}^{\infty} \sqrt{\pi} \int \int \int n_j T_j \left[|\langle H/\hat{\varepsilon} \rangle|^2 \frac{n \left(\omega_{*N}^j + \left(\hat{\varepsilon} - \frac{3}{2}\right) \omega_{*T}^j + \omega_E \right) - \omega}{n \langle \omega_D^j \rangle + l \omega_b^j - i \nu_{\text{eff}}^j + n \omega_E - \omega} \right] \frac{\hat{\tau}}{B_0} \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} d\Lambda d\Psi$$

General:

$$\delta W_K = \sum_j \sum_{l=-\infty}^{\infty} 2\sqrt{2}\pi^2 \int \int \int \left[\left| \langle H/\hat{\varepsilon} \rangle \right|^2 \frac{(\omega - n\omega_E) \frac{\partial f_j}{\partial \varepsilon} - \frac{n}{Z_j e} \frac{\partial f_j}{\partial \Psi}}{n \langle \omega_D^j \rangle + l\omega_b^j - i\nu_{\text{eff}}^j + n\omega_E - \omega} \right] \frac{\hat{\tau}}{m_j^{\frac{3}{2}} B} |\chi| \hat{\varepsilon}^{\frac{5}{2}} d\hat{\varepsilon} d\chi d\Psi,$$

Changed pitch angle variable from: $\Lambda = \mu B_0/\varepsilon$ to: $\chi = v_{\parallel}/v$

A new δW term arises from this term of the perturbed distribution function:

$$\begin{split} \tilde{f}_{j} &= -\boldsymbol{\xi}_{\perp} \cdot \boldsymbol{\nabla} f_{j} + Z_{j} e \frac{\partial f_{j}}{\partial \varepsilon} \left(\tilde{\boldsymbol{\Phi}} + \boldsymbol{\xi}_{\perp} \cdot \boldsymbol{\nabla} \Phi_{0} \right) \\ &+ i m_{j} \left(\omega \frac{\partial f_{j}}{\partial \varepsilon} - n \frac{\partial f_{j}}{\partial P_{\phi}} \right) \left(\mathbf{v} \cdot \boldsymbol{\xi}_{\perp} - \tilde{s}_{j} \right) - \frac{m_{j}}{B} \frac{\partial f_{j}}{\partial \mu} \left(-i \omega \boldsymbol{\xi}_{\perp} \cdot \mathbf{v}_{\perp} + \left(\frac{\mu}{m_{j}} \frac{\mathbf{B}}{B} + \frac{v_{\parallel} \mathbf{v}_{\perp}}{B} \right) \cdot \tilde{\mathbf{B}} \right) \end{split}$$

Also requires corrections to fluid terms with an anisotropic parameter: and effect on equilibrium itself, etc...

$$\sigma = 1 + \frac{\mu_0 \left(p_\perp - p_\parallel \right)}{B^2}$$

[T. Antonsen and Y. Lee, Phys. Fluids 25, 132 (1982)]

RWM Stabilization Dependence on Energetic Particle Distribution

Approach

- Establish target downward or horizontally shifted plasmas with off-axis neutral beam injection.
 - In 2010 XP1030 (D. Battaglia) produced plasmas that were shifted off axis by $\Delta z = -25$ cm. He only used 2MW of beam power, however.
- Add n=1, 30 Hz., 1kA peak to peak traveling wave for active MHD spectroscopy.
- Use n=2 and n=3 non-resonant magnetic braking to decrease plasma rotation, find marginal point or peak in RFA.
- Change plasma conditions, such as height and beam power.
 Repeat for comparison to theory at multiple conditions.
 - Can also use previous technique to change the EP content by changing the plasma current and field (which changes the thermal plasma as well).

RWM Stabilization Physics at Reduced Collisionality

- Motivation
 - In future devices with lower v, plasmas in resonance will gain stability, but the stability gradient with rotation will increase.
- Goals

[J.W. Berkery et al., Phys. Rev. Lett. 106 075004 (2011)]

- Resistive wall mode stability with respect to plasma rotation will be experimentally determined in low v, NSTX-U relevant plasmas, and compared to expectation from kinetic stabilization theory.
- Addresses:
 - NSTX Milestone R(12-3): Assess access to reduced density and collisionality in high-performance scenarios.
 - IR(12-1): Investigate magnetic braking physics and develop toroidal rotation control at low collisionality (incremental).
 - ITPA: MDC-2: Joint experiments on resistive wall mode physics.

In contrast to previous theory, reduced v_{eff} is stabilizing for on-resonance plasmas, increasing stability gradient

Reducing collisions has two competing effects:

- reduces collisional dissipation that is important when plasma rotational resonances are not present
- reduces damping of resonant kinetic stabilizing effects, allowing them to be more powerful

[J.W. Berkery et al., Phys. Rev. Lett. 106 075004 (2011)]

In future devices with lower collisionality:

- plasmas in rotational resonance will be even more stable; off-resonance almost no effect
- plasma stability gradient with rotation will increase
- it will be especially important to avoid unfavorable rotation through rotation or active mode control

RWM Stabilization Physics at Reduced Collisionality

- Approach
 - Establish target low collisionality plasmas.
 - This XP will leverage the successful development of a reliably operating low collisionality target, which will be pursued as part of the R(12-3) milestone.
 - Add n=1, 30 Hz., 1kA peak to peak traveling wave for active MHD spectroscopy.
 - Use n=3 non-resonant magnetic braking to decrease ω_{ϕ} .
 - Go to both higher and lower collisionality. Repeat for comparison to theory at multiple conditions.
 - Lower density plasmas are expected to be subject to more EPMs.
 It is possible that we could find EPM-triggered RWMs in this XP.
 - Techniques to diagnose the eigenfunction, with edge ME-SXR, reflectometer, or BES, as in Menard's proposal, can also be tried.

RWM Passive Stabilization Physics - Diagnostics

- Required diagnostics / capabilities
 - n=2 braking capability highly desired (in addition to usual n=3)
 - RWM sensors
 - CHERS toroidal rotation measurement
 - Thomson scattering
 - USXR
 - MSE
 - Toroidal Mirnov array / spectrogram with toroidal mode number analysis
 - FIDA
- Desired diagnostics
 - Advanced USXR diagnostics
 - Reflectometer
 - BES
 - Fast camera
 - CHERS poloidal rotation measurement

9