

Supported by

U.S. DEPARTMENT OF Office of Science

The impact of elongation and aspect ratio on the global stability of ST plasmas

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Stefan Gerhardt

NSTX 2011 & 12 Research Forum MHD Breakout Session Wed. March 16th, B318 PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst RRC Kurchatov Inst TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Big Picture

- Aspect (A) ratio and elongation (κ) are the lowest order shape parameters in a tokamak.
- NSTX has a large database of stability results with A<1.55 and κ <2.4.
 - NSTX upgrade will run at larger values of both these parameters, while needing $\beta_N \sim 4.5-5$.
- It is hard to scan these parameters independently in NSTX...
 - Will be even harder in NSTX-U...last chance for these scans?
- Relevant Milestone Text: The maximum sustainable normalized beta will be determined versus aspect ratio (up to A=1.7) and elongation (up to 3) and compared to ideal stability theory using codes such as DCON and PEST.
- Propose to do three types of scans:
 - Scan #1: Mixed κ & A scan at fixed outer gap (12 shots).
 - Use RFA analysis to look for passive instability.
 - Scan #2: A scan at fixed kappa (8 shots).
 - Test the disruptive β_N limit.
 - Scan #3: Kappa scan at fixed A (8 shots).
 - Test the disruptive β_N limit.
 - Scan #4: Go to highest possible elongation and aspect ratio (6 shots).
 - Test the disruptive β_N limit.
- Goals:
 - Determine if, within the achievable range of A and κ , there is a measurable change in global stability. Does n=0 or n=1 limit the strongly shaped, high- β operating space.
 - Collect data validating the β -limit assumptions for NSTX Upgrade.

We know that ideal stability limits are reduced as the aspect ratio increases

- Discharges from XP-1071. Use experimental shapes and profiles.
- No-wall β_{N} limit reduced by 0.75-1 units as the aspect ratio is increased.
- No effort made to assess the β_N limit in these scans...were run with a constant input of 4 MW.

In General, It is Hard to Scan A and κ Independently

• Fundamental Issue: the inner gap is not an independently controlled quantity.

Scan of Kappa and A can be Achieved by Scanning the Inner Gap at Fixed Outer Gap.

- This method was used in XP-1071.
 - Was able to rapidly complete scan.
 - High-A limit set by PF-1A current limit.
- This scheme facilitates RFA measurements
 - Maintains approximately constant distance between plasma boundary and RWM B_P sensors.
 - Shapes have 8 cm outer gap to increase signal levels.

Α	к	I _P	q ₉₅	I _{PF-1A}
1.71	2.63	700	9.8	19.6
1.58	2.49	700	12.48	13.3
1.46	2.37	700	18.3	7

Scan of A at Fixed Kappa With Constant I_P or Constant q₉₅

High aspect ratio limit set by the • PF-1A coil current limit.

Scan of A at fixed κ and I_P

Scan of Kappa At Fixed A. With Constant I_P or Constant q₉₅

XP Plan Summary

- Step 1: Inner gap scan for RFA measurements. (12 shots)
 - Use three shapes.
 - Make RFA measurements at β_N =4 and 4.5 (use β_N controller?).
 - 30 Hz co-propagating waves. No magnetic breaking.
 - Do we see much stronger RFA as the aspect ratio is increased (and no-wall limit is reduced)?
- Step 2: Aspect ratio scan at fixed kappa. (10 shots)
 - Use β_{N} controller to ramp to the disruptive β_{N} limit
- Step 3: Kappa scan at fixed kappa. (10 shots)
 - Use β_N controller to ramp to the disruptive β_N limit.
- Step 4: Go to very high elongation(~3) and aspect ratio (1.75):
 - Use β_N controller to ramp to the disruptive β_N limit.
- ASC XPs designed to improve the vertical control system should be attempted before this XP is run
- Analysis: Experimental equilibrium analysis with EFIT & LRDFIT, Comparison to ideal stability theory (DCON & PEST), TRANSP for data integration.

Interesting NSTX-U Scenarios have $\beta_N \sim 4.5$ (and Greater)

1.0 T, 900kA, A=1.65, κ=2.7, R_{tan}=[50,60,70,110,120,130] 90 kV Beams

We want to confirm/test that $\beta_N \sim 5$ is sustainable at the highest κ and A achievable.

