

Supported by

Columbia U. Group 2011-12 Macrostability XPs

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

V1.2

S.A. Sabbagh¹, J.W. Berkery¹, J.M. Bialek¹, Y.S. Park¹, R.E. Bell, S.P. Gerhardt², B.P. LeBlanc², J.E. Menard², J.K. Park², and many others...

¹Department of Applied Physics, Columbia University, NY, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ

> NSTX FY2011-12 Research Forum March 16th, 2011 PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Columbia U. Group 2011-12 Macrostability TSG XPs (Short Summary)

General Comments

- □ XPs address NSTX milestones and ITPA MHD joint experiments, MHD Working Groups
- □ XPs slated for 2011 could bridge into 2012, especially if not completed
- XPs slated for 2012 indicated as guidance, could run earlier if machine capabilities support them
- Macrostability TSG (2011)
 - RWM stabilization dependence on energetic particle profile (Berkery)
 - \square RWM stabilization/control, NTV V_b alteration of higher A ST targets (Sabbagh) 1.5 days
 - □ RWM state space active control physics (independent coil control)(Sabbagh) 1.0 days
 - RWM state space active control at low plasma rotation (Y-S Park)
 1.0 days
 - □ NTV steady-state rotation at reduced torque (HHFW) XP 1062 (Sabbagh) 0.5 days

Macrostability TSG (2012)

- □ RWM control physics with partial control coil coverage (JT-60SA) (Y-S Park) 0.5 days
- RWM stabilization physics at reduced collisionality (Berkery)
 1.0 days
- □ Neoclassical toroidal viscosity at reduced v (independent coil control) (Sabbagh) 1.0 days

V1.2

Columbia U. Group 2011-12 Macrostability XPs (Detailed Summary)

- □ Macrostability TSG (2011)
 - RWM stabilization dependence on energetic particle profile (Berkery) 1.0 days
 - Joint NSTX/DIII-D experiment, ITPA MDC-2
 - **RWM** stabilization/control, NTV V $_{\phi}$ alteration of higher A ST targets (Sabbagh) 1.5 days
 - R(11-2), IR(12-1), MDC-2, MDC-17, WG7, PID control (examine snowflake configuration as well)
 - Use A scan at fixed κ (from SPG XP) to carefully examine NTV variation + gap scan for RWM
 - □ RWM state space active control physics (independent coil control) (Sabbagh)1.0 days
 - R(11-2), R(11-3), MDC-17, WG7, n = 1&2, vary gains/targets: (i) fiducial, (ii) low li, (iii) higher A, (iv) snowflake
 - RWM state space active control at low plasma rotation (Y-S Park)
 1.0 days
 - R(11-2), MDC-2, MDC-17, ITPA WG7
 - □ NTV steady-state V_b at reduced torque with HHFW XP 1062 (Sabbagh) 0.5 days
 - IR(12-1), ITPA MDC-12, key data to complete XP1062
- Macrostability TSG (2012)
 - □ RWM control physics with partial control coil coverage (JT-60SA) (Y-S Park) 1.0 days
 - MDC-2, MDC-17, WG7, mode non-rigidity, support for JT-60SA, connection to ITER
 - RWM stabilization physics at reduced collisionality (Berkery)1.0 days
 - R(12-3), ITPA MDC-2, test RWM stability theory for NSTX-U, ITER
 - Neoclassical toroidal viscosity at reduced v (independent coil control) (Sabbagh) 1.0 days
 - R(12-3), IR(12-1), ITPA MDC-12, test NTV theory for NSTX-U, ITER, other tokamaks
 - Include scans to investigate island-induced NTV (XP743 approved, but never run)

V1.2

XP: RWM stabilization, control, and NTV rotation alteration of higher A ST targets

Motivation

- Next-step ST devices (and the planned upgrade of NSTX) aim to operate at higher aspect ratio (A) than usual NSTX values
- Evaluate changes in RWM stabilization physics, RWM control, and NTV V_{ϕ} alteration to directly address R(11-2), IR(12-1) milestone tasks

Goals / Approach

- Utilize higher A plasmas developed by ASC TSG to study key n > 0 stability physics, control, and non-resonant NTV alteration
 - RWM stabilization physics: effect of A changes, plasma/plate gap, EP profile on marginally stable $β_N$, $ω_φ$ profile
 - RWM control physics: Influence of proximity to plates, influence of snowflake divertor
 - Neoclassical toroidal viscosity: dedicated A scan to address explicit R(11-2) milestone task

- □ NSTX Research Milestones R(11-2), IR(12-1)
- ITPA joint experiment MDC-2, MDC-17, MHD WG7

Investigate RWM stability physics, control, NTV at higher A most efficiently by starting from ASC target development

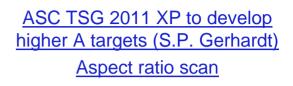
G Further target development

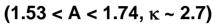
- Where possible, run target attributes closest to next step STs and determine affect on stability (e.g. high κ, low l_i, snowflake divertor)
- Generate "future ST" target comparison plasma
 - with most consistent parameters for "next-step" STs (stability challenge)

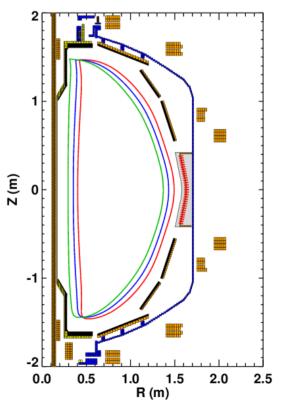
RWM stabilization physics

- Scan of A at fixed κ yields
 - Variation of plasma/plate distance
 - Variation of EP profile, ω_{ϕ} profile
- Determine influence on RWM marginal boundary vs. ω_{ϕ}
- Compare to A scan with fixed outer gap
- Compare to "future ST" target plasma

RWM control


- Determine control alteration for A scan at fixed κ by examining change in RWM controllability, RWM marginal boundary vs. ω_φ
- Compare control of "future ST" target with/without snowflake div.


NTV plasma rotation alteration

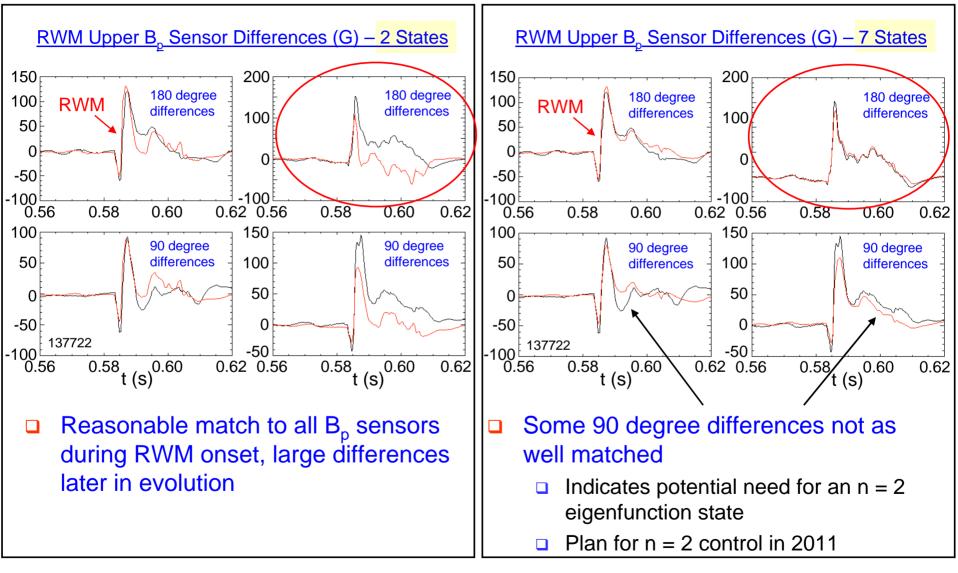

- Use both n = 2, n = 3 applied field if possible (broader NTV profile)
- **\Box** Run A scan with fixed outer gap, compare to A scan fixed κ
 - Make maximum A variation possible! (largest gaps possible)

XP needs

Request: 1.5 run days

XP: RWM state space active control physics

Motivation


- RWM state space controller (RWMSC) allowing influence of conducting structures, plasma mode shape / response expected to improve control performance, allows greater shielding of control coils needed in future devices
- □ Improve capability of present NSTX RWMSC by using new 2nd SPA

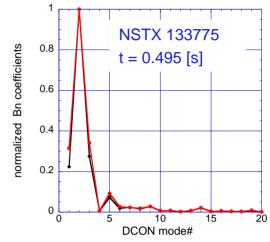
Goals / Approach

- Determine control physics advantages of including influence of wall, choice of input eigenfunction set, inclusion of n > 1 eigenfunctions
- **Examine control aspects of several high performance target plasmas**
- Determine effect of control with 6 independent RWM coils
- Determine influence of reducing effect of conducting structure
- **\Box** Examine influence of adding n = 1 RWM PID control using B_r sensors

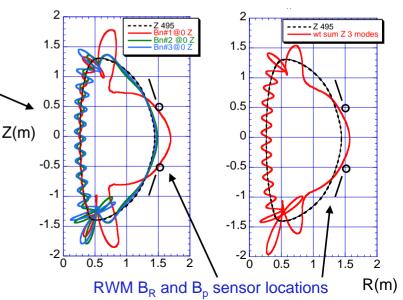
- □ NSTX Research Milestones R(11-2), R(11-3)
- □ ITPA joint experiment MDC-2, MDC-17, MHD WG7

Increased number of states in RWM state space controller improves match to sensors over entire mode evolution

Black: experiment Red: offline RWM state space controller



Research Forum FY11-12: Columbia U. group XPs – Macrostability TSG (S.A. Sabbagh, et al.)


Upgrades of new RWM state space controller will leverage new 2nd SPA power supply to study physics effects

- 2nd SPA power supply allows independent control of the 6 RWM coils
- New RWM state space controller physics studies
 - Addition of n > 1 eigenfunction will then yield n = 1, 2 feedback, and higher n based on observer match to wall states
 - Test controller on various high performance targets
 - (i) fiducial, (ii) low li, (iii) higher A, (iv) snowflake divertor
 - Eigenfunction variations: e.g. does snowflake divertor configuration reduce divertor mode?
 - Compare controller with influence of wall vs. without influence of wall
- XP needs
 - Request: 1 run day
 - n > 1 control requires 2nd SPA, but other studies (e.g. add n = 2) do not require it

<u>n = 1 multi-mode RWM spectrum (mmVALEN)</u>

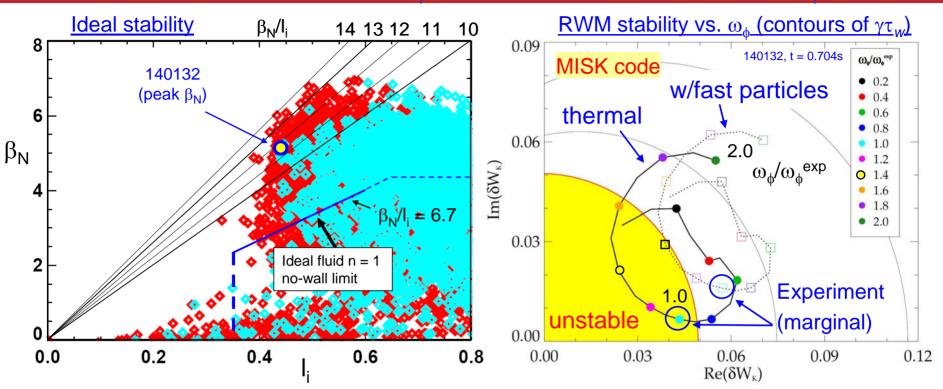
<u>n = 1 ideal eigenfunctions for fiducial plasma</u>

XP: RWM state space active control at reduced plasma rotation

Motivation

Present theory shows ITER advanced scenario plasmas are RWM unstable just above the n = 1 no wall limit, and alpha particle stabilization is weak; Amount of kinetic resonance stabilization in future ST is uncertain

Goals / Approach


- Demonstrate RWM control over a greater range of plasma rotation using RWM state space control (incl. low ω_{ϕ} , intermediate ω_{ϕ} at marginal stability)
- Determine control physics differences of varying input eigenfunction set (including allowance of n > 1 eigenfunctions) at various ω_φ
- Vary key controller parameters to examine influence on stability
- Test compatibility with applied fields for NTV rotation damping
 - Ensure controller doesn't reduce n = 3 braking field significantly
- **Examine influence of adding n = 1 RWM PID control using B_r sensors**

Addresses

- NSTX Research Milestones R(11-2)
- □ ITPA joint experiment MDC-2, MDC-17, MHD WG7

() NSTX

Kinetic stability calculations show reduced stability in low I_i target plasma as ω_{ϕ} is reduced; also at low ω_{ϕ}

Can RWM unstable regions be controlled?

- Ideal stability analysis shows high margin over no-wall limit
 - RWM stabilization by kinetic effects large
- **D** MISK: RWM marginal stability at various ω_{ϕ}

Demonstrate control in these regions!

Find controller parameters important for stabilization

 Includes n > 1 control, variation of eigenfunctions used in controller, etc.

```
Request: 1 run day
```

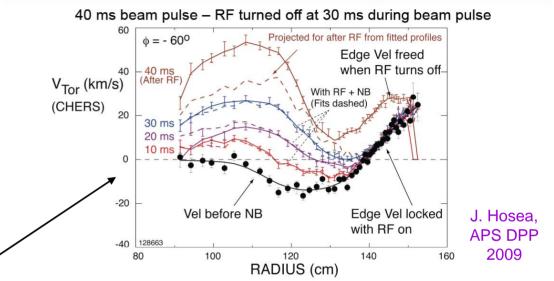
NTV steady-state offset velocity at reduced torque with HHFW (XP1062)

Motivation

- Measure and understand neoclassical toroidal viscosity (NTV) steady-state offset velocity physics to gain confidence in extrapolation of the effect to future devices
 - Background: NSTX low ω_{ϕ} NTV experiments with co-NBI + non-resonant magnetic braking do not show NTV steady-state offset velocity to be in the counter-I_p direction (e.g., shown in DIII-D (Garofalo, PRL 2008), claimed consistent with theory)

Goals

- □ Complete XP1062, partially run in 2010 (excluded HHFW portion of shot list)
- Determine NTV offset rotation in plasmas with no NBI torque (HHFW heated)
 - Use demonstrated technique to measure ω_{ϕ} in RF plasmas
 - Use n = 3 applied field, compare to results with n = 2 applied field (if available)
- (optional) Determine if low ω_{ϕ} (low ω_{E} superbanana plateau (SBP) regime) can be reproduced during the NBI portion of these discharges with non-resonant braking
 - Can attempt to measure NTV steady state offset velocity this way as well when varying nonresonant applied field magnitude


- NSTX Milestone IR(12-1), key data to complete XP1062
- ITPA MDC-12

Zero input torque ω_{ϕ} profile diagnosed in 2009 RF XPs

Determine NTV offset rotation – RF approach

- Generate ω_φ with RF at highest T_i, W_{tot} possible, diagnose similar to Hosea/Podesta 2009
- Repeat for different *initial* values of n = 3 (or 2) field, determine if pre-NBI ω_φ changes
- Note that if NTV offset is indeed only in counter-I_p direction, the ω_φ profile will change (it's presently counter in core, co at the edge
- □ Attempt to maintain nearzero ω_{ϕ} during NBI phase
 - New way to enter/sustain low ω_E SBP regime

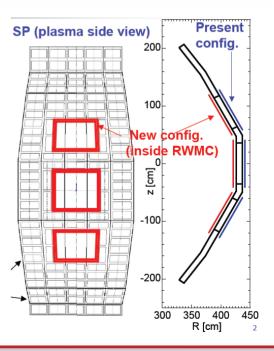
- Mechanism causing this edge effect not understood, but may point to edge ion loss
- RF apparently provides a drag on core plasma rotation as well

□ Since SBP regime yields maximum NTV

- Entering it by lowering ω_{ϕ} yielded an observed increase in NTV without mode locking (2009-10)
- Conversely, attempt to measure decrease in NTV as SBP regime is exited
- Request: 0.5 run days

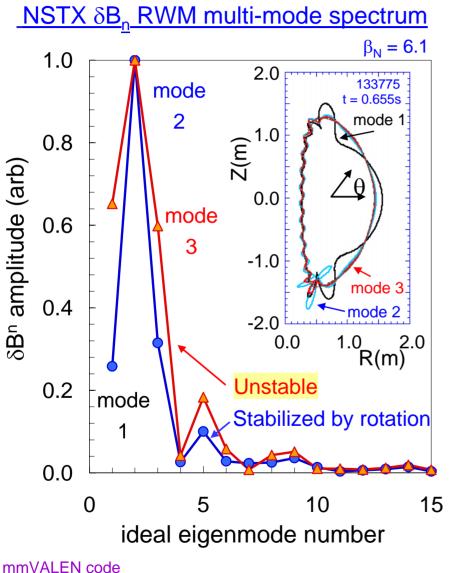
XP: RWM control physics with partial control coil coverage

Motivation


- Effect of partial coil coverage (e.g. JT-60SA)*, and impact of internal coil loss (e.g. ITER) may lead to "mode non-rigidity" during RWM feedback – the effect on mode control needs to be understood
- Provides key physics input for NSTX NCC design**

Goals / Approach

- RWM control in NSTX will be attempted with partial coverage of the RWM coils to test the physics of RWM mode rigidity
- Leverage new independent control of the RWM coils
- Determine the change in the computed multi-mode RWM spectrum and compare to experiment
- Compare attempted control with both the RWM PID controller, and RWM state space controller
- Addresses
 - □ ITPA joint experiment MDC-2, MDC-17, MHD WG7
 - *Collaborative RWM stabilization research with JAEA (for JT-60SA); **physics input for NSTX NCC design


JT-60SA passive plates and RWM control coils

WNSTX

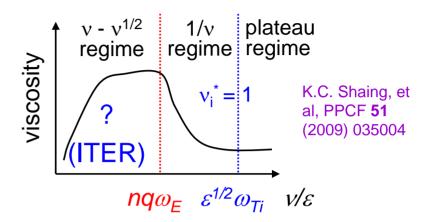
Multi-mode RWM computation shows 2^{nd} eigenmode component has dominant amplitude at high β_N in NSTX stabilizing structure

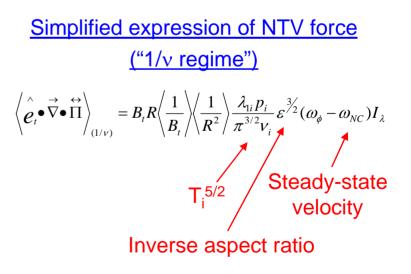
- □ XP Approach, physics investigated
 - Deactivate (i) one RWM coil, (ii) two neighboring RWM coils, (iii) every other RWM coil
 - Determine computed RWM multi-mode spectrum change for each condition
 - Include n > 1 spectrum
 - Compare to measured n = 1,2,3 δB
 - Compare effect on RWM PID and state space control
 - PID should be more subject to failure by n > 1 mode content, error in tracking toroidal phase
 - State space controller with n > 1 eigenfunctions and wall effects may provide greater control
 - Attempt to "correct" control failures by adjusting controller inputs
 - Re-try failed control at reduced β_N to determine if/when control is regained

Request: 1 run day

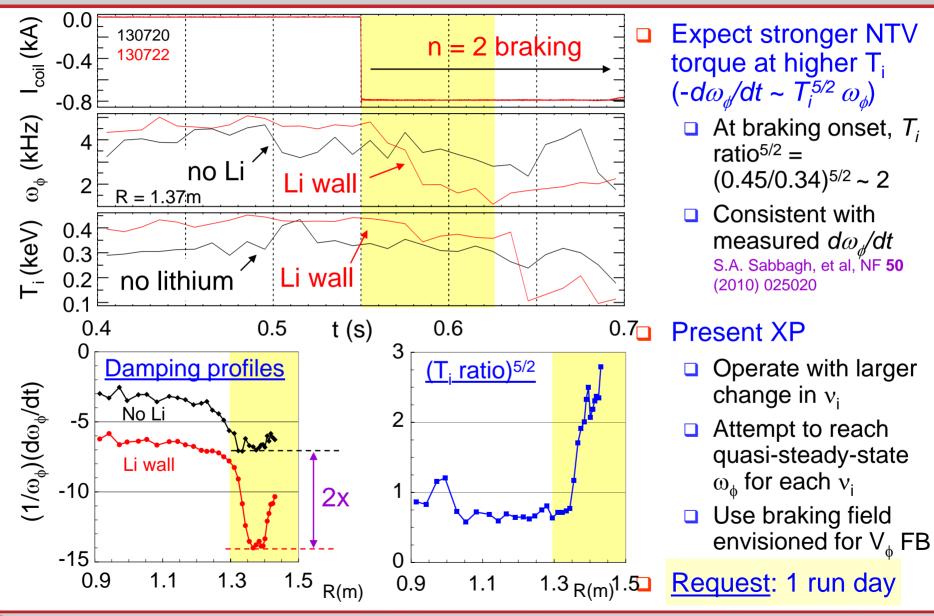
mmVALEN coo

XP: Neoclassical toroidal viscosity at reduced collisionality


Motivation


- Experimentally, the dependence of neoclassical toroidal viscosity (NTV) on collisionality is not well known
- $\hfill\square$ Understanding important for NSTX V_ϕ control, NSTX-U, and future devices

Goals / Approach


- Examine the dependence of NTV on ion collisionality
 - expected to increase with decreasing v_i from present experiments)
 - leverage low v_i target development by the ASC TSG for milestone R(12-3)
- Determine if superbanana plateau increase of NTV depends on v_i
- Operate with pre-programmed n = 2, 3 applied fields for V_o control testing

- NSTX Milestones R(12-3), IR(12-1)
- ITPA joint experiment MDC-2, MDC-17, MHD WG7

Stronger non-resonant NTV braking at increased T_i

