

Pre-FY15 forum Meeting #1

Coll of Wm & Mary Columbia U CompX General Atomics FIU INL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Lehigh U Nova Photonics

Old Dominion

ORNL

PPPL

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

X Science LLC

Walter Guttenfelder, **Yang Ren**, Stan Kaye, and NSTX-U T&T TSG

NSTX-U T&T TSG Dec. 16, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI **Chonbuk Natl U NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

T&T XMP/XPs topics/titles to: (1) recommission T&T systems/diagnostics, (2) run in ~1st month of research ops

- No T&T specific diagnostics require immediate XMPs
- For profiles: Assess NBI modulation necessary for CHERS measurement
- Almost all T&T XPs will require TRANSP analysis, therefore requiring TS, CHERS, magnetics/EFIT/MSE, neutron detector, bolometers
 - TRANSP can be used to assess self-consistency among diagnostics
 - Between shots TRANSP will be available (BEAST)
- Priority T&T XPs (motivated by Milestones & PAC35 research plans)
- 1. H-mode confinement & turbulence scaling with higher I_P, B_T (NBI source)
- 2. Influence of q and Ω_{tor} profiles (with 2nd NBI and 3D coil) on turbulence & transport
- Measure GAE/CAE mode trends with NBI power, R_{tan}
- 4. Explore H-mode access & variation with R_{tan} (pedestal physics/Boundary TSG?)
- Other T&T experiments for FY15 more detailed versions of the above after intial operation
- 1. H-mode confinement and turbulence scaling with v_*
 - Requires careful parameter matching (I_P~B_T, n~const, T~B² by adjusting P_{NBI})
- 2. Measure perturbative particle transport
 - Need SGI & TS
- 3. Measure perturbative momentum transport
 - Uncertainty of simultaneous NBI modulation + CHERS measurement
 - Or possibly use 3D fields
- 4. Measure GAE/CAE mode structure using reflectometry
- 5. Measure L-H threshold parametric dependencies (especially on R_{TAN})

FY15-16 milestones relevant to T&T research & T&T Research Plans from PAC35

- (R15-1) Assess H-mode τ_E , pedestal and SOL characteristics at high B_T , I_p , P_{NBI}
 - Assess confinement scaling at reduced v_∗
- **(R15-2)** Assess the effects of neutral beam injection parameters on the fast ion distribution function and neutral beam driven current profile
 - Investigate sensitivity of GAE/CAE induced χ_e to fast ion phase space
- (Joint Research Target 2015) Quantify impact of broadened current and pressure profiles on confinement and stability
 - Study transport and turbulence response with q, s, $p_0/\langle p \rangle$ using expanded NBI flexibility

STATED RESEARCH PLANS FROM PAC35:

- Characterize H-mode confinement scaling at increased B_T/I_p = 0.8 T/1.6 MA
 - Push to lowest collisionality possible (is $\tau_F \sim 1/v_*$ still valid?)
 - − Characterize changes in multi-channel transport χ_e , χ_i , χ_ϕ , D_{imp} (e.g., does $\chi_i \approx \chi_{i,NC}$ & $D_i \approx D_{i,NC}$ remain at lower v_*), compare with theory
- Explore parametric transport and turbulence dependencies with q and flow profiles using expanded NBI flexibility, 3D coils
 - Characterize changes in low-k turbulence (BES, reflectometry), compare with gyrokinetic simulations
- Measure CAE/GAE mode frequencies and structure (BES, reflectometry)
 - Characterize effect of GAE/CAE on experimental χ_e , sensitivity to NBI tangency radii/pitch angle
 - Compare with theory, HYM simulations

